Skip to main content

Advertisement

Log in

Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear.

Methods

We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed.

Results

Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195–4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270–4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC.

Conclusions

Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

CTGF:

Connective tissue growth factor

cDNA:

Complementary DNA

ITGBL1:

Integrin, beta-like 1

LIMA1:

LIM domain and actin binding 1

SLAMF7:

SLAM family, member 7

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GO:

Gene ontology

DAVID:

Database for Annotation, Visualization and Integrated Discovery

DM:

Diabetes mellitus

BMI:

Body mass index

GSEA:

Gene set enrichment analysis

NF-κB:

Nuclear factor-kappa B

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

PI3K:

Phosphatidylinositol 3 kinase

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90 (Erratum in: CA Cancer J Clin 2011;61:134).

    Article  PubMed  Google Scholar 

  3. Davis GL, Dempster J, Meler JD, et al. Hepatocellular carcinoma: management of an increasingly common problem. Proc (Bayl Univ Med Cent). 2008;21:266–80.

    Google Scholar 

  4. Dyson J, Jaques B, Chattopadyhay D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60:110–7.

    Article  PubMed  Google Scholar 

  5. Caldwell SH, Crespo DM, Kang HS, et al. Obesity and hepatocellular carcinoma. Gastroenterology. 2004;127:S97–103.

    Article  CAS  PubMed  Google Scholar 

  6. Vanni E, Bugianesi E. Obesity and liver cancer. Clin Liver Dis. 2014;18:191–203.

    Article  PubMed  Google Scholar 

  7. Weng CJ, Hsieh YH, Tsai CM, et al. Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1808–15.

    Article  PubMed  Google Scholar 

  8. Karagozian R, Derdák Z, Baffy G. Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism. 2014;63:607–17.

    Article  CAS  PubMed  Google Scholar 

  9. Stickel F, Hellerbrand C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut. 2010;59:1303–7.

    Article  CAS  PubMed  Google Scholar 

  10. Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4 (Erratum in: Science 2009;326:1346).

    Article  CAS  PubMed  Google Scholar 

  11. Park EJ, Lee JH, Yu GY, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka S, Arii S, Yasen M, et al. Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br J Surg. 2008;95:611–9.

    Article  CAS  PubMed  Google Scholar 

  14. Murakata A, Tanaka S, Mogushi K, et al. Gene expression signature of the gross morphology in hepatocellular carcinoma. Ann Surg. 2011;253:94–100.

    Article  PubMed  Google Scholar 

  15. Furuta K, Sato S, Yamauchi T, et al. Changes in intrahepatic gene expression profiles from chronic hepatitis to hepatocellular carcinoma in patients with hepatitis C virus infection. Hepatol Res. 2008;38:673–82.

    Article  CAS  PubMed  Google Scholar 

  16. Perbal B. CCN proteins: multifunctional signalling regulators. Lancet. 2004;363:62–4.

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka S. CCN4 and CCN6 variants in Wnt-inducible signaling pathway. In: Perbal P, Takigawa M, editors. CCN proteins: a new family of cell growth and differentiation regulators. London: Imperial College Press; 2005. p. 293–304.

    Chapter  Google Scholar 

  18. Tanaka S, Pero SC, Taguchi K, et al. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst. 2006;98:491–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa K, Tanaka S, Matsumura S, et al. EpCAM-targeted therapy for human hepatocellular carcinoma. Ann Surg Oncol. 2014;21:1314–22.

    Article  PubMed  Google Scholar 

  20. Aihara A, Tanaka S, Yasen M, et al. The selective Aurora B kinase inhibitor AZD1152 as a novel treatment for hepatocellular carcinoma. J Hepatol. 2010;52:63–71.

    Article  CAS  PubMed  Google Scholar 

  21. Coulouarn C, Lefebvre G, Daveau R, et al. Genome-wide response of the human Hep3B hepatoma cell to proinflammatory cytokines, from transcription to translation. Hepatology. 2005;42:946–55.

    Article  CAS  PubMed  Google Scholar 

  22. Slany A, Haudek VJ, Zwickl H, et al. Cell characterization by proteome profiling applied to primary hepatocytes and hepatocyte cell lines Hep-G2 and Hep-3B. J Proteome Res. 2010;9:6–21.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka S, Wands JR. Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor beta1-induced apoptosis. Cancer Res. 1996;56:3391–4.

    CAS  PubMed  Google Scholar 

  24. Byun JK, Choi YK, Kang YN, et al. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology. 2015;61:953–64.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka S, Mogushi K, Yasen M, et al. Oxidative stress pathways in noncancerous human liver tissue to predict hepatocellular carcinoma recurrence: a prospective, multicenter study. Hepatology. 2011;54:1273–81.

    Article  CAS  PubMed  Google Scholar 

  26. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10:945–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sánchez-López E, Rayego S, Rodrigues-Díez R, et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J Am Soc Nephrol. 2009;20:1513–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009;137:713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy M, Godson C, Cannon S, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem. 1999;274:5830–4.

    Article  CAS  PubMed  Google Scholar 

  30. Wahab NA, Schaefer L, Weston BS, et al. Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli. Diabetologia. 2005;48:2650–60.

    Article  CAS  PubMed  Google Scholar 

  31. Kuiper EJ, van Zijderveld R, Roestenberg P, et al. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem. 2008;56:785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Luo F, Pan K, et al. High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells. BMC Cell Biol. 2007;16(8):1.

    Article  Google Scholar 

  33. Liu SC, Hsu CJ, Fong YC, et al. CTGF induces monocyte chemoattractant protein-1 expression to enhance monocyte migration in human synovial fibroblasts. Biochim Biophys Acta. 2013;1833:1114–24.

    Article  CAS  PubMed  Google Scholar 

  34. Chujo S, Shirasaki F, Kondo-Miyazaki M, et al. Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J Cell Physiol. 2009;220:189–95.

    Article  CAS  PubMed  Google Scholar 

  35. Charrier A, Chen R, Kemper S, et al. Regulation of pancreatic inflammation by connective tissue growth factor (CTGF/CCN2). Immunology. 2014;141:564–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paradis V, Perlemuter G, Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology. 2001;34:738–44.

    Article  CAS  PubMed  Google Scholar 

  37. Lo L, McLennan SV, Williams PF, et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J Hepatol. 2011;55:435–44.

    Article  CAS  PubMed  Google Scholar 

  38. Chen L, Charrier AL, Leask A, et al. Ethanol-stimulated differentiated functions of human or mouse hepatic stellate cells are mediated by connective tissue growth factor. J Hepatol. 2011;55:399–406.

    Article  CAS  PubMed  Google Scholar 

  39. Llovet JM, Villanueva A, Lachenmayer A, et al. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12:408–24.

    Article  CAS  PubMed  Google Scholar 

  40. Barashi N, Weiss ID, Wald O, et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology. 2013;58:1021–30.

    Article  CAS  PubMed  Google Scholar 

  41. He G, Dhar D, Nakagawa H, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

    Article  CAS  PubMed  Google Scholar 

  43. Perng DW, Wu YC, Tsai CC, et al. Bile acids induce CCN2 production through p38 MAP kinase activation in human bronchial epithelial cells: a factor contributing to airway fibrosis. Respirology. 2008;13:983–9.

    PubMed  Google Scholar 

  44. Neesse A, Frese KK, Bapiro TE, et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci USA. 2013;110:12325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010;5:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masahisa Jinushi at Keio University and Dr. Shinya Suzu at Kumamoto University for advice and support about human macrophage experiments. We also thank Ms. Ayumi Shioya and Ms. Hiromi Nagasaki for technical assistance. This work was supported by Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Health and Labour Sciences Research Grant from the Ministry of Health Labour and Welfare of Japan (Research on Hepatitis) and AMED (Japan Agency for Medical Research and Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Tanaka.

Ethics declarations

Conflict of interest

The authors disclose no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akahoshi, K., Tanaka, S., Mogushi, K. et al. Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors. J Gastroenterol 51, 910–922 (2016). https://doi.org/10.1007/s00535-015-1159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1159-8

Keywords

Navigation