Skip to main content

Advertisement

Log in

Pharmacogenomics in chemotherapy for GI tract cancer

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The study of pharmacogenomics (PGx) has recently been intensively applied to gastrointestinal tract cancer. It has become clear that there are genetic differences in the activities of enzymes that influence the kinetics of chemotherapeutic agents. Moreover, genetic differences related to cellular sensitivity to anti-cancer agents have also been elucidated. In GI-tract cancer chemotherapy, 5-FU, gemcitabine, taxanes (docetaxel and paclitaxel), platinum (cisplatin and oxaliplatin) and irinotecan are often used, and molecular targeting therapy has also been developed. The respective PGx markers to such agents have been reported. Of the candidate PGx markers, K-ras mutation and UGT1A1 polymorphisms have sufficient evidence to justify routine clinical assessment for the selection of anti-cancer regimens. Progress in this field would facilitate the further development of PGx-guided individualized therapy, which could be expected to increase therapeutic efficacy and decrease the risk of adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleming RA, Milano G, Thyss A, Etienne MC, Renee N, Schneider M, et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res. 1992;52(10):2899–902.

    PubMed  CAS  Google Scholar 

  2. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA, et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res. 2000;6(12):4705–12.

    PubMed  Google Scholar 

  3. van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.

    Article  PubMed  CAS  Google Scholar 

  4. Danenberg PV. Thymidylate synthetase—a target enzyme in cancer chemotherapy. Biochim Biophys Acta. 1977;473(2):73–92.

    PubMed  CAS  Google Scholar 

  5. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6(4):1322–7.

    PubMed  CAS  Google Scholar 

  6. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct. 1995;20(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  7. Kawakami K, Salonga D, Park JM, Danenberg KD, Uetake H, Brabender J, et al. Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res. 2001;7(12):4096–101.

    PubMed  CAS  Google Scholar 

  8. Kawakami K, Watanabe G. Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res. 2003;63(18):6004–7.

    PubMed  CAS  Google Scholar 

  9. Ulrich CM, Bigler J, Velicer CM, Greene EA, Farin FM, Potter JD. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomarkers Prev. 2000;9(12):1381–5.

    PubMed  CAS  Google Scholar 

  10. Metzger R, Danenberg K, Leichman CG, Salonga D, Schwartz EL, Wadler S, et al. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin Cancer Res. 1998;4(10):2371–6.

    PubMed  CAS  Google Scholar 

  11. Ciaparrone M, Quirino M, Schinzari G, Zannoni G, Corsi DC, Vecchio FM, et al. Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology. 2006;70(5):366–77.

    Article  PubMed  CAS  Google Scholar 

  12. Sarbia M, Stahl M, von Weyhern C, Weirich G, Puhringer-Oppermann F. The prognostic significance of genetic polymorphisms (methylenetetrahydrofolate reductase C677T, methionine synthase A2756G, thymidilate synthase tandem repeat polymorphism) in multimodally treated oesophageal squamous cell carcinoma. Br J Cancer. 2006;94(2):203–7.

    Article  PubMed  CAS  Google Scholar 

  13. Huang ZH, Hua D, Li LH. The polymorphisms of TS and MTHFR predict survival of gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy in Chinese population. Cancer Chemother Pharmacol. 2009;63(5):911–8.

    Article  PubMed  CAS  Google Scholar 

  14. Afzal S, Jensen SA, Vainer B, Vogel U, Matsen JP, Sorensen JB et al. MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann Oncol 2009. 22 May [Epub ahead of print].

  15. Ikeda K, Yoshisue K, Matsushima E, Nagayama S, Kobayashi K, Tyson CA, et al. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res. 2000;6(11):4409–15.

    PubMed  CAS  Google Scholar 

  16. Daigo S, Takahashi Y, Fujieda M, Ariyoshi N, Yamazaki H, Koizumi W, et al. A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur. Pharmacogenetics. 2002;12(4):299–306.

    Article  PubMed  CAS  Google Scholar 

  17. Kaida Y, Inui N, Suda T, Nakamura H, Watanabe H, Chida K. The CYP2A6*4 allele is determinant of S-1 pharmacokinetics in Japanese patients with non-small-cell lung cancer. Clin Pharmacol Ther. 2008;83(4):589–94.

    Article  PubMed  CAS  Google Scholar 

  18. Martinez C, Albet C, Agundez JA, Herrero E, Carrillo JA, Marquez M, et al. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999;65(4):369–76.

    Article  PubMed  CAS  Google Scholar 

  19. Harvey VJ, Slevin ML, Dilloway MR, Clark PI, Johnston A, Lant AF. The influence of cimetidine on the pharmacokinetics of 5-fluorouracil. Br J Clin Pharmacol. 1984;18(3):421–30.

    PubMed  CAS  Google Scholar 

  20. Gilbar PJ, Brodribb TR. Phenytoin and fluorouracil interaction. Ann Pharmacother. 2001;35(11):1367–70.

    Article  PubMed  CAS  Google Scholar 

  21. Hui YF, Reitz J. Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm. 1997;54(2):162–70. quiz 197-8.

    PubMed  CAS  Google Scholar 

  22. Hilbig A, Oettle H. Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther. 2008;8(4):511–23.

    Article  PubMed  CAS  Google Scholar 

  23. Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6(Suppl 6):7–13.

    Article  PubMed  CAS  Google Scholar 

  24. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17(Suppl 5):v7–12.

    Article  PubMed  Google Scholar 

  25. Bouffard DY, Laliberte J, Momparler RL. Kinetic studies on 2′, 2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol. 1993;45(9):1857–61.

    Article  PubMed  CAS  Google Scholar 

  26. Yonemori K, Ueno H, Okusaka T, Yamamoto N, Ikeda M, Saijo N, et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin. Clin Cancer Res. 2005;11(7):2620–4.

    Article  PubMed  CAS  Google Scholar 

  27. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2007;25(1):32–42.

    Article  PubMed  CAS  Google Scholar 

  28. Hong WK. The current status of docetaxel in solid tumors. An M. D. Anderson Cancer Center Review. Oncology (Williston Park). 2002;16(6 Suppl 6):9–15.

    Google Scholar 

  29. Baker SD, Li J, ten Tije AJ, Figg WD, Graveland W, Verweij J, et al. Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin Pharmacol Ther. 2005;77(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  30. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH. The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res. 2000;6(4):1255–8.

    PubMed  CAS  Google Scholar 

  31. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer. 2005;116(5):824–9.

    Article  PubMed  CAS  Google Scholar 

  32. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005;4(8):815–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 2008;99(5):967–72.

    Article  PubMed  CAS  Google Scholar 

  34. Armstrong D, Pare P, Pericak D, Pyzyk M. Symptom relief in gastroesophageal reflux disease: a randomized, controlled comparison of pantoprazole and nizatidine in a mixed patient population with erosive esophagitis or endoscopy-negative reflux disease. Am J Gastroenterol. 2001;96(10):2849–57.

    PubMed  CAS  Google Scholar 

  35. Henningsson A, Marsh S, Loos WJ, Karlsson MO, Garsa A, Mross K, et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res. 2005;11(22):8097–104.

    Article  PubMed  CAS  Google Scholar 

  36. Nakajima M, Fujiki Y, Kyo S, Kanaya T, Nakamura M, Maida Y, et al. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J Clin Pharmacol. 2005;45(6):674–82.

    Article  PubMed  CAS  Google Scholar 

  37. Chang SM, Kuhn JG, Rizzo J, Robins HI, Schold SC Jr, Spence AM, et al. Phase I study of paclitaxel in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J Clin Oncol. 1998;16(6):2188–94.

    PubMed  CAS  Google Scholar 

  38. Zeng-Rong N, Paterson J, Alpert L, Tsao MS, Viallet J, Alaoui-Jamali MA. Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res. 1995;55(21):4760–4.

    PubMed  CAS  Google Scholar 

  39. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 2002;62(17):4899–902.

    PubMed  CAS  Google Scholar 

  40. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.

    Article  PubMed  CAS  Google Scholar 

  41. Bradbury PA, Kulke MH, Heist RS, Zhou W, Ma C, Xu W et al. Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes. Pharmacogenet Genomics 2009;19(8):613–25.

    Article  PubMed  CAS  Google Scholar 

  42. Font A, Salazar R, Maurel J, Taron M, Ramirez JL, Tabernero J, et al. Cisplatin plus weekly CPT-11/docetaxel in advanced esophagogastric cancer: a phase I study with pharmacogenetic assessment of XPD, XRCC3 and UGT1A1 polymorphisms. Cancer Chemother Pharmacol. 2008;62(6):1075–83.

    Article  PubMed  CAS  Google Scholar 

  43. Goekkurt E, Hoehn S, Wolschke C, Wittmer C, Stueber C, Hossfeld DK, et al. Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS)—novel predictors for response and survival in gastric cancer patients. Br J Cancer. 2006;94(2):281–6.

    Article  PubMed  CAS  Google Scholar 

  44. Oldenburg J, Kraggerud SM, Brydoy M, Cvancarova M, Lothe RA, Fossa SD. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med. 2007;5:70.

    Article  PubMed  CAS  Google Scholar 

  45. Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD. Cisplatin-induced long-term hearing impairment is associated with specific glutathione S-transferase genotypes in testicular cancer survivors. J Clin Oncol. 2007;25(6):708–14.

    Article  PubMed  CAS  Google Scholar 

  46. Kuhn JG. Pharmacology of irinotecan. Oncology (Williston Park). 1998;12(8 Suppl 6):39–42.

    CAS  Google Scholar 

  47. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res. 2003;9(9):3246–53.

    PubMed  CAS  Google Scholar 

  48. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69.

    Article  PubMed  CAS  Google Scholar 

  49. Ando Y, Saka H, Asai G, Sugiura S, Shimokata K, Kamataki T. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol. 1998;9(8):845–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60(24):6921–6.

    PubMed  CAS  Google Scholar 

  51. Onoue M, Inui K. Role of UGT1A1*28 and UGT1A1*6 for irinotecan-induced adverse drug reaction. Gan To Kagaku Ryoho. 2008;35(7):1080–5.

    PubMed  CAS  Google Scholar 

  52. Yokoyama S, Imamura Y, Hatano N, Fukuoka T, Usui H, Morita Y. Two cases of advanced colorectal cancer with UGT1A1*28 homozygosity treated by FOLFIRI. Gan To Kagaku Ryoho. 2009;36(7):1159–61.

    PubMed  Google Scholar 

  53. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005;33(3):434–9.

    Article  PubMed  CAS  Google Scholar 

  54. Xiang X, Jada SR, Li HH, Fan L, Tham LS, Wong CI, et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics. 2006;16(9):683–91.

    Article  PubMed  CAS  Google Scholar 

  55. Takane H, Miyata M, Burioka N, Kurai J, Fukuoka Y, Suyama H, et al. Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 allele. Ther Drug Monit. 2007;29(5):666–8.

    Article  PubMed  Google Scholar 

  56. Murry DJ, Cherrick I, Salama V, Berg S, Bernstein M, Kuttesch N, et al. Influence of phenytoin on the disposition of irinotecan: a case report. J Pediatr Hematol Oncol. 2002;24(2):130–3.

    Article  PubMed  Google Scholar 

  57. Kuhn JG. Influence of anticonvulsants on the metabolism and elimination of irinotecan. A North American Brain Tumor Consortium preliminary report. Oncology (Williston Park). 2002;16(8 Suppl 7):33–40.

    Google Scholar 

  58. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005;6(5):279–86.

    Article  PubMed  CAS  Google Scholar 

  59. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  PubMed  CAS  Google Scholar 

  60. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  PubMed  CAS  Google Scholar 

  61. Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, Yamashita J, et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer. 1999;85(9):1894–902.

    PubMed  CAS  Google Scholar 

  62. Orita H, Maehara Y, Emi Y, Kakeji Y, Baba H, Korenaga D, et al. c-erbB-2 expression is predictive for lymphatic spread of clinical gastric carcinoma. Hepatogastroenterology. 1997;44(13):294–8.

    PubMed  CAS  Google Scholar 

  63. Rebischung C, Barnoud R, Stefani L, Faucheron JL, Mousseau M. The effectiveness of trastuzumab (Herceptin) combined with chemotherapy for gastric carcinoma with overexpression of the c-erbB-2 protein. Gastric Cancer. 2005;8(4):249–52.

    Article  PubMed  Google Scholar 

  64. Van Cutsem E, Kang Y, Chung H, Shen L, Sawaki A, Lordick F et al. Efficacy results from the ToGA trial: a phase III study of trastuzumab added to standard chemotherapy in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer. ASCO 2009:Abs.No.LBA4509 (Abstract of ASCO 2009).

Download references

Conflict of interest statement

The author declares no conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Furuta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuta, T. Pharmacogenomics in chemotherapy for GI tract cancer. J Gastroenterol 44, 1016–1025 (2009). https://doi.org/10.1007/s00535-009-0124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0124-9

Keywords

Navigation