Skip to main content

Advertisement

Log in

Branched-chain amino acids suppress insulin-resistance-based hepatocarcinogenesis in obese diabetic rats

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Branched-chain amino acids (BCAAs) reportedly inhibit the incidence of hepatocellular carcinoma (HCC) in patients with liver cirrhosis and obesity that is frequently associated with insulin resistance (IR). However, the possible mechanism is still obscure. The aim of the present study was to examine the effect of BCAAs, especially in conjunction with angiogenesis, on hepatocarcinogenesis under the condition of IR.

Methods

The effect of BCAAs on the development of liver enzyme-altered preneoplastic lesions and angiogenesis was examined in obese diabetic Otsuka Long-Evans Tokushima Fatty rats. We also performed an in vitro study to elucidate the possible mechanisms involved.

Results

Treatment with BCAAs markedly inhibited glutathione-S-transferase placental form (GST-P)-positive preneoplastic lesions along with suppression of neovascularization in the liver. The hepatic expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, was also attenuated. BCAA treatment significantly suppressed glucose- and insulin-induced in vitro angiogenesis in the presence of VEGF.

Conclusions

In obese diabetic rats BCAAs exerted a chemopreventive effect against HCC, associated with the suppression of VEGF expression and hepatic neovascularization. Since BCAA preparations are widely used in clinical practice for patients with chronic liver diseases, this agent may represent a new strategy for chemoprevention against HCC in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

BCAA:

Branched-chain amino acid

CHC:

Chronic hepatitis C

DEN:

Diethylnitrosamine

DM:

Diabetes mellitus

EC:

Endothelial cells

GST-P:

Glutathione-S-transferase placental form

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis virus C

HUVEC:

Human umbilical vein endothelial cells

IR:

Insulin resistance

LETO:

Long-Evans Tokushima Otsuka rats

MAb:

Neutralizing monoclonal antibody

mTOR:

Mammalian target of rapamysin

NASH:

Non-alcoholic steatohepatitis

OLETF:

Otsuka Long-EvansTokushima Fatty rats

PH:

Partial hepatectomy

QUICKI:

Quantitative insulin sensitivity check index

VEGF:

Vascular endothelial growth factor

References

  1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  2. Niederau C, Lange S, Heintges T, Erhardt A, Buschkamp M, Hurter D, et al. Prognosis of chronic hepatitis C: results of a large, prospective cohort study. Hepatology. 1998;28:1687–95.

    Article  PubMed  CAS  Google Scholar 

  3. Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology. 2003;125:1695–704.

    Article  PubMed  CAS  Google Scholar 

  4. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840–8.

    Article  PubMed  CAS  Google Scholar 

  5. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54:533–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15.

    Article  PubMed  CAS  Google Scholar 

  7. Guo RP, Zhong C, Shi M, Zhang CQ, Wei W, Zhang YQ, et al. Clinical value of apoptosis and angiogenesis factors in estimating the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:547–55.

    Article  PubMed  CAS  Google Scholar 

  8. Iavarone M, Lampertico P, Iannuzzi F, Manenti E, Donato MF, Arosio E, et al. Increased expression of vascular endothelial growth factor in small hepatocellular carcinoma. J Viral Hepat. 2007;14:133–9.

    Article  PubMed  CAS  Google Scholar 

  9. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst. 2000;92:143–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  PubMed  CAS  Google Scholar 

  11. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–12.

    Article  PubMed  CAS  Google Scholar 

  12. Brandvold KA, Neiman P, Ruddell A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene. 2000;19:2780–5.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology. 2004;39:1517–24.

    Article  PubMed  CAS  Google Scholar 

  14. Frachon S, Gouysse G, Dumorti J, Couvelard A, Nejjari M, Mion F, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol. 2001;34:850–7.

    Article  PubMed  CAS  Google Scholar 

  15. Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

    Article  PubMed  CAS  Google Scholar 

  16. Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3:705–13.

    Article  PubMed  CAS  Google Scholar 

  17. Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol Res. 2006;35:204–14.

    PubMed  CAS  Google Scholar 

  18. Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J. 2007;407:113–20.

    Article  PubMed  CAS  Google Scholar 

  19. Murata K, Moriyama M. Isoleucine, an essential amino acid, prevents liver metastases of colon cancer by antiangiogenesis. Cancer Res. 2007;67:3263–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sato T, Asahi Y, Toide K, Nakayama N. Insulin resistance in skeletal muscle of the male Otsuka Long-Evans Tokushima Fatty rat, a new model of NIDDM. Diabetologia. 1995;38:1033–41.

    Article  PubMed  CAS  Google Scholar 

  21. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Combination of vitamin K(2) and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression. J Hepatol. 2005;42:687–93.

    Article  PubMed  CAS  Google Scholar 

  22. Saito M, Hamasaki M, Shibuya M. Induction of tube formation by angiopoietin-1 in endothelial cell/fibroblast co-culture is dependent on endogenous VEGF. Cancer Sci. 2003;94:782–90.

    Article  PubMed  CAS  Google Scholar 

  23. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10.

    Article  PubMed  CAS  Google Scholar 

  24. Yoshiji H, Kuriyama S, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, et al. The angiotensin-i-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res. 2001;7:1073–8.

    PubMed  CAS  Google Scholar 

  25. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23:3151–71.

    Article  PubMed  CAS  Google Scholar 

  26. Ijichi C, Matsumura T, Tsuji T, Eto Y. Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system. Biochem Biophys Res Commun. 2003;303:59–64.

    Article  PubMed  CAS  Google Scholar 

  27. Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33:27–32.

    Article  PubMed  CAS  Google Scholar 

  28. Dormond O, Contreras AG, Meijer E, Datta D, Flynn E, Pal S, et al. CD40-induced signaling in human endothelial cells results in mTORC2- and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo. J Immunol. 2008;181:8088–95.

    PubMed  CAS  Google Scholar 

  29. Nishitani S, Ijichi C, Takehana K, Fujitani S, Sonaka I. Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun. 2004;313:387–9.

    Article  PubMed  CAS  Google Scholar 

  30. Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1292–300.

    Article  PubMed  CAS  Google Scholar 

  31. Kawaguchi T, Taniguchi E, Itou M, Sumie S, Oriishi T, Matsuoka H, et al. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int. 2007;27:1287–92.

    PubMed  CAS  Google Scholar 

  32. Kawaguchi T, Nagao Y, Matsuoka H, Ide T, Sata M. Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease. Int J Mol Med. 2008;22:105–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Yoshiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshiji, H., Noguchi, R., Kitade, M. et al. Branched-chain amino acids suppress insulin-resistance-based hepatocarcinogenesis in obese diabetic rats. J Gastroenterol 44, 483–491 (2009). https://doi.org/10.1007/s00535-009-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0031-0

Keywords

Navigation