Skip to main content

Advertisement

Log in

Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells

  • Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Advanced glycation end products (AGEs), final reaction products of protein with sugars, are known to contribute to diabetes-related complications. We have recently demonstrated high levels of serum AGEs in patients with nonalcoholic steatohepatitis (NASH). However, direct evidence for the participation of AGEs in hepatic infl ammation and fibrosis has not been shown. To explore the pathogenesis of NASH, we examined the biological infl uence of AGEs on hepatic stellate cells (HSCs) in vitro.

Methods

An established human HSC line, LI90, was exposed to a glyceraldehyde-derived-AGE (glycer-AGE), and the phenotypical changes of the LI90 cells were investigated. Intracellular formation of reactive oxygen species (ROS) was measured using a fl uorescent probe. Cell proliferation was examined by MTS assay. Fibrogenic marker gene expression was analyzed by quantitative real-time polymerase chain reaction. The production of monocyte chemoattractant protein 1 (MCP-1) was assessed by enzyme-linked immunosorbent assay.

Results

The expression of AGE receptor was confirmed in LI90 cells at the mRNA and protein levels. In addition to increasing intracellular ROS generation, glycer-AGE upregulated fibrogenic genes such as those encoding for α-smooth muscle actin, transforming growth factor-β1, and collagen type Iα2. The expression of MCP-1 mRNA in LI90 cells as well as its secretion into the culture medium was significantly increased in response to AGEs. These changes were attenuated by treatment with the antioxidant N-acetylcysteine.

Conclusions

These data indicate that AGEs induce ROS generation and intensify the proliferation and activation of HSCs, supporting the possibility that antioxidants may represent a promising treatment for prevention of the development of hepatic fibrosis in NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, et al. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 2002;290: 973–978.

    Article  PubMed  CAS  Google Scholar 

  2. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 2001;108: 261–268.

    PubMed  CAS  Google Scholar 

  3. Yamamoto Y, Yamagishi S, Yonekura H, Doi T, Tsuji H, Kato I, et al. Roles of the AGE-RAGE system in vascular injury in diabetes. Ann N Y Acad Sci 2000;902: 163–170; discussion 170–2.

    Article  PubMed  CAS  Google Scholar 

  4. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980;55: 434–438.

    PubMed  CAS  Google Scholar 

  5. Hyogo HYS, Iwamoto K, Arihiro K, Takeuchi M, Sato T, Ochi H, et al. Elevated levels of serum advanced glycation end products in patients with nonalcoholic steatohepatitis. J Gastroenterol Hepatol 2007;22: 1114–1119.

    Article  CAS  Google Scholar 

  6. Fehrenbach H, Weiskirchen R, Kasper M, Gressner AM. Upregulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology 2001;34: 943–952.

    Article  PubMed  CAS  Google Scholar 

  7. Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T, et al. Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Lab Invest 1995;72: 731–739.

    PubMed  CAS  Google Scholar 

  8. Takeuchi M, Makita Z, Bucala R, Suzuki T, Koike T, Kameda Y. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo. Mol Med 2000;6: 114–125.

    PubMed  CAS  Google Scholar 

  9. Sasaki N, Takeuchi M, Chowei H, Kikuchi S, Hayashi Y, Nakano N, et al. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci Lett 2002;326: 117–120.

    Article  PubMed  CAS  Google Scholar 

  10. Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 2007;37: 50–57.

    PubMed  CAS  Google Scholar 

  11. Vrbacky M, Drahota Z, Mracek T, Vojtiskova A, Jesina P, Stopka P, et al. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochim Biophys Acta 2007;1767: 989–997.

    Article  PubMed  CAS  Google Scholar 

  12. Lee SB, Bae IH, Bae YS, Um HD. Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem 2006;281: 36228–36235.

    Article  PubMed  CAS  Google Scholar 

  13. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K, et al. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 2005;41: 1272–1281.

    Article  PubMed  CAS  Google Scholar 

  14. Ueki N, Taguchi T, Takahashi M, Adachi M, Ohkawa T, Amuro Y, et al. Inhibition of hyaluronan synthesis by vesnarinone in cultured human myofibroblasts. Biochim Biophys Acta 2000;1495: 160–167.

    Article  PubMed  CAS  Google Scholar 

  15. Von Bubnoff D, Matz H, Cazenave JP, Hanau D, Bieber T, De La Salle H. Kinetics of gene induction after FcepsilonRI ligation of atopic monocytes identified by suppression subtractive hybridization. J Immunol 2002;169: 6170–6177.

    Google Scholar 

  16. Wang L, Wang J, Wang BE, Xiao PG, Qiao YJ, Tan XH. Effects of herbal compound 861 on human hepatic stellate cell proliferation and activation. World J Gastroenterol 2004;10: 2831–2835.

    PubMed  Google Scholar 

  17. Yamagishi S, Hsu CC, Taniguchi M, Harada S, Yamamoto Y, Ohsawa K, et al. Receptor-mediated toxicity to pericytes of advanced glycosylation end products: a possible mechanism of pericyte loss in diabetic microangiopathy. Biochem Biophys Res Commun 1995;213: 681–687.

    Article  PubMed  CAS  Google Scholar 

  18. Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med 2003;34: 1–10.

    Article  PubMed  CAS  Google Scholar 

  19. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999;29: 140–148.

    Article  PubMed  CAS  Google Scholar 

  20. Takeuchi M, Makita Z. Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo. Curr Mol Med 2001;1: 305–315.

    Article  PubMed  CAS  Google Scholar 

  21. Takeuchi M, Yanase Y, Matsuura N, Yamagishi Si S, Kameda Y, Bucala R, et al. Immunological detection of a novel advanced glycation end-product. Mol Med 2001;7: 783–791.

    PubMed  CAS  Google Scholar 

  22. Takeuchi M, Yamagishi S. TAGE (toxic AGEs) hypothesis in various chronic diseases. Med Hypotheses 2004;63: 449–452.

    Article  PubMed  CAS  Google Scholar 

  23. Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 2005;41: 1074–1084.

    Article  PubMed  CAS  Google Scholar 

  24. Abdelmalek MF, Angulo P, Jorgensen RA, Sylvestre PB, Lindor KD. Betaine, a promising new agent for patients with nonalcoholic steatohepatitis: results of a pilot study. Am J Gastroenterol 2001;96: 2711–2717.

    Article  PubMed  CAS  Google Scholar 

  25. Gulbahar OKZ, Ersoz G, Akarca US, Musoglu A. Treatment of nonalcoholic steatohepatitis with N-acetylcysteine. Gastroenterology 2000;118: A1444 (abstract).

    Article  Google Scholar 

  26. Lavine JE. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. J Pediatr 2000;136: 734–738.

    Article  PubMed  CAS  Google Scholar 

  27. Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003;112: 1383–1394.

    PubMed  CAS  Google Scholar 

  28. Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 2000;378: 259–268.

    Article  PubMed  CAS  Google Scholar 

  29. Hensley K, Kotake Y, Sang H, Pye QN, Wallis GL, Kolker LM, et al. Dietary choline restriction causes complex I dysfunction and increased H(2)O(2) generation in liver mitochondria. Carcinogenesis 2000;21: 983–989.

    Article  PubMed  CAS  Google Scholar 

  30. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem 1994;269: 14828–14834.

    PubMed  CAS  Google Scholar 

  31. Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338: 436–445.

    Article  PubMed  CAS  Google Scholar 

  32. Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006;44: 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  33. Fan X, Subramaniam R, Weiss MF, Monnier VM. Methylglyoxalbovine serum albumin stimulates tumor necrosis factor alpha secretion in RAW 264.7 cells through activation of mitogenactivating protein kinase, nuclear factor kappaB and intracellular reactive oxygen species formation. Arch Biochem Biophys 2003;409: 274–286.

    Article  PubMed  CAS  Google Scholar 

  34. Wu CH, Huang CM, Lin CH, Ho YS, Chen CM, Lee HM. Advanced glycosylation end products induce NF-kappaB dependent iNOS expression in RAW 264.7 cells. Mol Cell Endocrinol 2002;194: 9–17.

    Article  PubMed  CAS  Google Scholar 

  35. Chang PC, Chen TH, Chang CJ, Hou CC, Chan P, Lee HM. Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway. Kidney Int 2004;65: 1664–1675.

    Article  PubMed  CAS  Google Scholar 

  36. Bierhaus A, Illmer T, Kasper M, Luther T, Quehenberger P, Tritschler H, et al. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 1997;96: 2262–2271.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, K., Kanno, K., Hyogo, H. et al. Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol 43, 298–304 (2008). https://doi.org/10.1007/s00535-007-2152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-007-2152-7

Key words

Navigation