Skip to main content
Log in

Petrography, geochemistry, and U–Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj–Sirjan zone, Zagros orogen (Iran)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj–Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro–diorite–tonalite assemblage, followed by a voluminous granodiorite–granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U–Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162–172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of ~165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167–153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj–Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher crustal levels, but within a thermally anomalous environment, which, therefore, leads to formation of evolved felsic rocks, such as the studied LCT aplite–pegmatite suite and their parental granitic rocks. This is a new result that indicates the role of syn-subduction crustal partial melting in the region as part of Zagros orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified after Mohajjel et al. 2003)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

(Modified from Ahmadi-Khalaji et al. 2007)

Similar content being viewed by others

References

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magma. J Petrol 35:525–541

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Article  Google Scholar 

  • Ahadnejad V, Valizadeh MV, Deevsalar R, Rezaei-Kahkhaei M (2011) Age and geotectonic position of the Malayer granitoids: implication for plutonism in the Sanandaj–Sirjan zone, W Iran. Neues Jahrb Geol P-A 261:61–75

    Article  Google Scholar 

  • Ahmadi-Khalaji A, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj–Sirjan zone, Western Iran. J Asian Earth Sci 29:859–877

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of Zagros orogenic belt of Iran: new data and interpretation. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Alfonso P, Melgarejo JC, Yusta I, Velasco F (2003) Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. Can Mineral 41:103–116

    Article  Google Scholar 

  • Aliani F, Maanijou M, Sabouri Z, Sepahi AA (2012) Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Chem Erde-Geochem 72:363–383

    Article  Google Scholar 

  • Alirezaei S, Hassanzadeh J (2012) Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: a new record of the Gondwana break-up in Iran. Lithos 151:122–134

    Article  Google Scholar 

  • Anderson MO, Lentz DR, McFarlane CRM, Falck H (2013) A geological, geochemical and textural study of an LCT pegmatite: implications for the magmatic versus metasomatic origin of Nb-Ta mineralization in the Moose II pegmatite, Northwest Territories Canada. J Geosci 58:299–320

    Article  Google Scholar 

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955

    Article  Google Scholar 

  • Arvin M, Pan Y, Dargahi S, Malekizadeh A, Babaei A (2007) Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J Asian Earth Sci 30:474–489

    Article  Google Scholar 

  • Azizi H, Asahara Y, Mehrabi B, Chung SL (2011) Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffiabad area, Sanandaj–Sirjan Zone, NW Iran. Chem Erde Geochem 71:363–376

    Article  Google Scholar 

  • Azizi H, Zanjefili-Beiranvand M, Asahara Y (2015) Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: evidence for Late Jurassic arc–continent collision. Lithos 216:178–195

    Article  Google Scholar 

  • Baharifar AA (1997) New perspective on petrogenesis of the regional metamorphic rocks of Hamadan area, Iran. Unpublished M.Sc. Thesis (in Farsi), Tarbiat Moallem University of Tehran, Iran

  • Baharifar AA (2004) Petrology of metamorphic rocks in the Hamadan area. Unpublished Ph. D. Thesis (in Farsi), Tarbiat Moallem University of Tehran, Iran, 218 pp

  • Baharifar A, Moinevaziri H, Bellon H, Piqué A (2004) The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. CR Geosci 336:1443–1452

    Article  Google Scholar 

  • Baker DR (1998) The escape of pegmatite dikes from granitic plutons: constraints from new models of viscosity and dike propagation. Can Mineral 36:255–363

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Sciences, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Braud J (1987) La suture du Zagros au niveau de Kermanshah (Kurdistan Iranian): reconstitution paleogeographique, evolution geodynamique, magmatique et structurale. Unpublished Ph.D. Thesis, Geodiffusion editeur, Paris

  • Brown M (2010) Melting of the continental crust during orogenesis: the thermal, rheological and compositional consequences of melt transport from lower to upper continental crust. Can J Earth Sci 47:655–694

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125(7–8):1079–1113

    Article  Google Scholar 

  • Cerný P (1991) Rare-element granite pegmatites. Part I: anatomy and internal evolution of pegmatite deposits. Part II: regional to global relationships and petrogenesis. Geosci Can 18:49–81

    Google Scholar 

  • Cerný P (1992) Geochemical and petrogenetic features of mineralization in rare element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Article  Google Scholar 

  • Cerný P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Cerný P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Cerný P, London D, Novak M (2012) Granitic pegmatites as reflections of their source. Elements 8:289–294

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I and S-type granites in the Lachlan Fold Belt. Trans R Soc Edin Earth Sci 83:1–26

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Chen CH, Lu HY, Lin W, Lee CY (2006) Thermal event records in SE China coastal areas: constraints from monazite ages of beach sands from two sides of the Taiwan Strait. Chem Geol 231:118–134

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–163:70–87

    Article  Google Scholar 

  • Christiansen EH, Keith JD (1996) Trace element systematics in silicic magmas: a metallogenic perspective. In: Wyman D (ed) Trace element geochemistry of volcanic rocks, 12th edn. Geological Association of Canada Short Course Notes, Quebec, pp 115–151

    Google Scholar 

  • Crowley JL, Brown RL, Gervais F, Gibson HD (2008) Assessing inheritance of zircon and monazite in granitic rocks from Monashee complex, Canadian Cordillera. J Petrol 49:1915–1929

    Article  Google Scholar 

  • Deer WA, Howie A, Zussman J (1982) Rock forming minerals. Longman, London, p 919

    Google Scholar 

  • Dill HG (2015) Pegmatites and aplites: their genetic and applied ore geology. Ore Geol Rev 69:417–561

    Article  Google Scholar 

  • El Bouseily AM, El Sokkary AA (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem Geol 16:207–219

    Article  Google Scholar 

  • Esna-Ashari A, Tiepolo M, Valizadeh MV, Hassanzadeh J, Sepahi AA (2012) Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj–Sirjan zone, Iran. J Asian Earth Sci 43:11–22

    Google Scholar 

  • Fazlnia A, Moradian A, Rezaei K, Moazzen M, Alipour S (2007) Synchronous activity of anorthositic and S-type granitic magmas in Chah-Dozdan Batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating. J Sci Islam Republ Iran 18:221–237

    Google Scholar 

  • Foley SF, Wheller GE (1990) Parallels in the origin of the geochemical signatures of island arc volcanic and continental potassic igneous rocks: the role of residual titanites. Chem Geol 85:1–18

    Article  Google Scholar 

  • Frost RB, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for Granitic Rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gao P, Zheng YF, Zhao ZF (2016) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267:133–157

    Article  Google Scholar 

  • Ghalamghash J, Mirnejad H, Rashid H (2009) Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj–Sirjan zone, NW Iran: a case study from Alvand pluton. Neues Jahrb Mineral Abh 186(1):79–93

    Article  Google Scholar 

  • Gregory CJ, Rubatto D, Allen CM, Williams IS, Hermann J, Ireland T (2007) Allanite micro-geochronology: a LA-ICP-MS and SHRIMP U–Th–Pb study. Chem Geol 245:162–182

    Article  Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Article  Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier Science, Amsterdam, p 501

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Izadikian L (2009) Structural and petrofabric analysis of metamorphic rocks of Alvand mountain (south and southwest of Hamadan). Ph.D. Thesis in tectonic, Shahid Beheshti university, Tehran, Iran (in persian)

  • Karakas O, Degruyter W, Bachmann O, Dufek J (2017) Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat Geosci 10:446–452

    Article  Google Scholar 

  • Linnen RL, Lichtervelde MV, Cerny P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Article  Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao Sh, Xu J, Chen HH (2010) Reappraisment of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chinese Sci Bull 55:1535–1546

    Article  Google Scholar 

  • London D (1999) Melt boundary layers and the growth of pegmatitic textures. Can Mineral 37:826–827 (abstr.)

    Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303

    Article  Google Scholar 

  • London D (2008) Pegmatites. Can Mineral 10:347p

    Google Scholar 

  • London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Article  Google Scholar 

  • London D (2014a) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104

    Article  Google Scholar 

  • London D (2014b) Subsolidus isothermal fractional crystallization. Am Mineral 99:543–546

    Article  Google Scholar 

  • London D, Manning DAC (1995) Chemical variation and significance of tourmaline from SW England. Econ Geol 90:495–519

    Article  Google Scholar 

  • London D, Morgan GVI (2012) The pegmatite puzzle. Elements 8:263–268

    Article  Google Scholar 

  • Ludwig KR (2003) User’s Manual for Isoplot/Ex, Version 3.0, A geochronological toolkit for Microsoft Excel Berkeley Geochronology Center Special Publication, v.4, Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA

  • Mahmoudi S, Corfu F, Masoudi F, Mehrabi B, Mohajjel M (2011) U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran. J Asian Earth Sci 41:238–249

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 10:635–643

    Article  Google Scholar 

  • Manning DAC (1982) Chemical and morphological variation in tourmalines from the Hub Kapong batholith of Peninsular Thailand. Mineral Mag 45:139–147

    Article  Google Scholar 

  • Martin RF, Vito CD (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can Mineral 43:2027–2048

    Article  Google Scholar 

  • Martin AJ, Gehrels GE, DeCelles PG (2007) The tectonic significance of (U, Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chem Geol 244:1–24

    Article  Google Scholar 

  • Masoudi F (1997) Contact metamorphism and pegmatites development in the region SW of Arak, Iran. Unpublished Ph.D. Thesis, University of Leeds, UK, 321p

  • McFarlane CRM (2016) Allanite U\Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration. Chem Geol 438:91–102

    Article  Google Scholar 

  • McFarlane CRM, Luo Y (2012) U–Pb geochronology using 193 nm Excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Geosci Can 39:158–172

    Google Scholar 

  • McFarlane CRM, McKeough M (2013) Petrogenesis of the Kulyk Lake monazite-apatite-Fe(Ti)-oxide occurrence revealed using in situ LA-(MC)-ICP-MS trace element mapping, U–Pb dating, and Sm-Nd isotope systematics on monazite. Am Min 98:1644–1659

    Article  Google Scholar 

  • Mezeme EB, Cocherie A, Faure M, Legendre O, Rossi Ph (2006) Electron microprobe monazite geochronology of magmatic events: examples from Variscan migmatites and granitoids, Massif Central, France. Lithos 87:276–288

    Article  Google Scholar 

  • Middlemost EAK (1985) Magmas and magmatic rocks: an introduction to igneous petrology. John Wiley and Sons Inc, New York, p 266

    Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj–Sirjan zone, Western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Nabelek PI, Whittington AG, Sirbescu MC (2010) The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts. Contrib Mineral Petrol 160:313–325

    Article  Google Scholar 

  • Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des biotites et typologie magmatique des granitoides. CR Heb Acad Sci 301:813–818

    Google Scholar 

  • Paquette JL, Tiepolo M (2007) High resolution (5 μm) U-Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Rashidnejad-Omran N, Emami MH, Sabzehei M, Rastad E, Bellon H (2002) Lithostratigraphy and Paleozoic to Paleocene history of some metamorphic complexes from Muteh area, Sanandaj–Sirjan zone (southern Iran). CR Geosci 334:1185–1191

    Article  Google Scholar 

  • Sepahi AA (1999) Petrology of the Alvand plutonic complex with special reference on granitoids. Unpublished Ph.D. Thesis (in Farsi), Tarbiat Moallem University of Tehran, Iran, 326p

  • Sepahi AA (2008) Typology and petrogenesis of granitic rocks in the Sanandaj–Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex. Neues Jahrb Geol P-A 247:295–312

    Article  Google Scholar 

  • Sepahi AA, Whitney DL, Baharifar AA (2004) Petrogenesis of andalusite-kyanite-sillimanite veins and host rocks, Sanandaj–Sirjan metamorphic belt, Hamadan, Iran. J Metamorph Geol 22:119–134

    Article  Google Scholar 

  • Sepahi AA, Shahbazi H, Siebel W, Ranin A (2014) Geochronology of plutonic rocks from the Sanandaj–Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the Marivan pluton. Geochronometria 41:207–215

    Article  Google Scholar 

  • Shahbazi H (2010) Petrology of igneous rocks and migmatitic complex of Alvand and intrusive body of Almogholagh, Hamedan and their genetic relationship. Unpublished Ph.D. Thesis (in Persian), ShahidBeheshti University, Tehran, Iran, 189p

  • Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Vousoughi-Abedini M (2010) Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassic magmatism. J Asian Earth Sci 39:668–683

    Article  Google Scholar 

  • Shand SJ (1943) Eruptive Rocks, their genesis, composition, classification and their relation to ore deposits, 3rd edn. John Wiley and Sons, New York, p 448

    Google Scholar 

  • Sheikholeslami R, Bullen H, Emami MH, Sabzehei M, Pique A (2003) New structural and K40–Ar40 data for the metamorphic rocks in Neyriz area (Sanandaj–Sirjan zone, southern Iran): their interest for an overview of the Neo-Tethyan domain in the Middle East. CR Geosci 335:981–991

    Article  Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  • Simmons WB, Webber KL, Falster AU, Nizamoff JW (2003) Pegmatology—Pegmatite mineralogy, petrology and petrogenesis. Rubellite Press, New Orleans, p 176

    Google Scholar 

  • Thomas R, Davidson P (2015) Comment on “A petrologic assessment of internal zonationin granitic pegmatites” by David London (2014). Lithos 212–215:462–468

    Article  Google Scholar 

  • Thomas R, Förster HJ, Heinrich W (2003) The behavior of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study. Contrib Mineral Petrol 144:457–472

    Article  Google Scholar 

  • Thomas R, Davidson P, Beurlen H (2012) The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Miner Petrol 106:55–73

    Article  Google Scholar 

  • Thompson RN (1982) Magmatism of the British Tertiary volcanic province. Scot J Geol 18:9–107

    Google Scholar 

  • Valizadeh MV, Cantagrel JM (1975) Premieres données radiométriques (K–AretRb–Sr) sur les micas du complexes magmatique du Mont Alvand, Pres Hamadan (Iran occidental). CR Acad Sci Paris 281:1083–1086

    Google Scholar 

  • Vidal O, Goffé B, Bousquet R, Parra T (1999) Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite. J Metamorph Geol 17:25–39

    Article  Google Scholar 

  • Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite–aplite dikes, San Diego County, California. Am Mineral 84:708–717

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wilson M (2007) Igneous Petrogenesis. Unwin Hyman, London, p 461p

    Google Scholar 

  • Yajam S, Montero P, Scarrow JH, Ghalamghash J, Razavi SMH, Bea F (2015) The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: sHRIMP zircon U–Pb and Sr and Nd isotope evidence. Geol Acta 13:25–43

    Google Scholar 

Download references

Acknowledgements

David Lentz and Christopher McFarlane are each supported by a NSERC Discovery grant. We thank research office of Bu-Ali Sina University for providing part of the budget for geochemicaland microprobe analyses of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Sepahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepahi, A.A., Salami, S., Lentz, D. et al. Petrography, geochemistry, and U–Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj–Sirjan zone, Zagros orogen (Iran). Int J Earth Sci (Geol Rundsch) 107, 1059–1096 (2018). https://doi.org/10.1007/s00531-017-1515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1515-4

Keywords

Navigation