Skip to main content
Log in

Origin of salt giants in abyssal serpentinite systems

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding ‘country’ rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653

    Article  Google Scholar 

  • Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II deep (Red Sea). Earth Planet Sci Lett 142:147–159

    Article  Google Scholar 

  • Antal T, Droz M, Magnin J, Rácz Z, Zrinyi M (1998) Derivation of the Matalon-Packter law for Liesegang patterns. J Chem Phys 109:9479–9486

    Article  Google Scholar 

  • Augustin N, van der Zwan FM, Devey CW, Ligi M, Kwasnitschka T, Feldens P, Bantan RA, Basaham AS (2016) Geomorphology of the central red sea rift: determining spreading processes. Geomorphology 274:162–179

    Article  Google Scholar 

  • Aziz NRK, Aswad KJA, Koyi KA (2011) Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geol Mag 148(5–6):819–837

    Article  Google Scholar 

  • Babel M, Schreiber BC (2014) Geochemistry of evaporites and evolution of seawater. In: Holland H, Turekian K (eds) Treatise on geochemistry, vol 9-17, 2nd edn. Elsevier, Amsterdam, pp 483–560

    Chapter  Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5:Q09F26. doi:10.1029/2004GC000744

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306. doi:10.1029/2006GL025681

    Article  Google Scholar 

  • Badr L, Hariri A, Moussa Z, Sultan R (2011) Band, target and onion patterns in Co(OH)2 Liesegang systems. Phys Rev E 83(016109):1–6

    Google Scholar 

  • Barnes JD, Sharp D (2006) A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process. Chem Geol 228:246–265

    Article  Google Scholar 

  • Beard JS, Frost BR, Fryer P, McCaig AM, Searle RC, Ildefonse B, Zinin P, Sharma SK (2009) Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J Petrol 50:387–403

    Article  Google Scholar 

  • Becker K, Fisher AT (2000) Permeability of upper oceanic basement on the eastern flank of the Juan de Fuca Ridge determined with drill-string packer experiments. J Geophys Res 105:897–912

    Article  Google Scholar 

  • Becker SP, Fall A, Bodnar RJ (2008) Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions (> 30 wt % NaCl): application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ Geol 103:539–554

    Article  Google Scholar 

  • Blackman DK, Karson JA, Kelley DS, Cann JR, Früh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL, Ross DK, Schroeder TL, Williams EA (2002) Geology of the Atlantis Massif (Mid-Atlantic Ridge,30°N): implications for the evolution of an ultramafic oceanic core complex. Mar Geophys Res 23:443–469

    Article  Google Scholar 

  • Bodnar RJ (2003) Introduction to aqueous fluid systems. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: Analysis and interpretation. Mineralogical association of Canada, Short Course 32, pp 81–99

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals. Methods and applications, Blacksburg (VA). Tech, Virginia, pp 117–130

    Google Scholar 

  • Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J, Torrent G (1988) Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia Bank. Earth Planet Sci Lett 48:23–34

    Article  Google Scholar 

  • Bonifacie M, Busigny V, Me´vel C, Philippot P, Agrinier P, Jendrzejewski N, Scambelluri M, Javoy M (2008) Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim Cosmochim Acta 72:126–139

    Article  Google Scholar 

  • Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:Q01004. doi:10.1029/2005GC001074

    Article  Google Scholar 

  • Brantut N, Passelègue FX, Deldicque D, Rouzaud J-N, Schubnel A (2016) Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44:607–610

    Article  Google Scholar 

  • Butler GP (1969) Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. J Sediment Petrol 39:1–70

    Google Scholar 

  • Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona PA (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochim Cosmochim Acta 62:2323–2333

    Article  Google Scholar 

  • Christeleit EC, Brandon MT, Zhuang G (2015) Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. Earth Planet Sci Lett 427:226–235

    Article  Google Scholar 

  • Christensen NI (2004) Serpentinites, peridotites, and seismology. Int Geol Rev 46:795–816

    Article  Google Scholar 

  • Cita MB (2006) Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine-filled collapsed basins. Sediment Geol 188–189:357–378

    Article  Google Scholar 

  • Decima A, Wezel FC (1971) Osservazioni sulle evaporiti messiniane della Sicilia centro-meridionale. Riv Miner Sicil 132–139:127–137

    Google Scholar 

  • Delacour A, Früh-Green GL, Bernasconi SM (2008) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72:5111–5127

    Article  Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412

    Article  Google Scholar 

  • Dilek Y, Pavlides S (2006) Postcollisional tectonics and magmatism in the Mediterranean region and Asia. In: Geological Society America Special Papers vol 409, Colorado (USA), pp 645

  • Dribus JR, Jackson MPA, Kapoor J, Smith MF (2008) The prize beneath the salt. Oilfield Rev 20:1–17

    Google Scholar 

  • Emmanuel S, Berkowitz B (2006) Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. Earth Planet Sci Lett 243:657–668

    Article  Google Scholar 

  • Etiope G, Schoell M, Hosgörmez H (2011) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey):Understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet Sc Lett 310:96–104

    Article  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Evans KA, Powell R, Frost BR (2013) Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168–169:67–84

    Article  Google Scholar 

  • Farmer P, Gray S, Hodgkiss G, Pieprzak A, Ratcliff D, Whitcombe D, Whitmore D (1993) Structural imaging: toward a sharper subsurface view. Oilfield Rev 5:28–41

    Google Scholar 

  • Feldens P, Mitchell NC (2015) Salt flows in the Central Red Sea. In: Rasul NMA, Stewart ICF (eds) The red sea. Springer, Berlin, pp 205–218

    Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Frost RL, Bouzaid JM, Musumeci AV, Kloproge GT, Martens WN (2006) Thermal decomposition of the synthetic hydrotalcite iowaite. J Therm Anal Calorim 86:437–441

    Article  Google Scholar 

  • Frost B, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39

    Article  Google Scholar 

  • Früh-Green GL, Connolly JAD, Plas A (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Subseafloor Biospht Mid-Ocean Ridges Geophys Monogr Ser 144:119–136

    Google Scholar 

  • Ghanbarzadeh S, Hesse MA, Prodanovi, Gardner MJE (2015) Deformation-assisted fluid percolation in rock salt. Science 350(6264):1069–1072

    Article  Google Scholar 

  • Graham R, Pepper A (2008) Observations on structures associated with Mud Diapirism and their role in petroleum charging and trapping. AAPG International Conference and Exhibition, Cape Town, South Africa, (Article 404119)

  • Griewank PJ, Notz D (2013) Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. J Geophys Res Oceans 118:3370–3386

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Plante Sci Lett 404:307–318

    Article  Google Scholar 

  • Hantz P (2006) Pattern Formation in a New Class of Precipitation Reactions. University of Geneve, Faculty of Sciences, PhD Thesis Published at website http://hantz.web.elte.hu

  • Hantz P, Biró I (2006) Phase separation in the wake of moving fronts: experiments and simulations. Phys Rev Lett 96:088305

    Article  Google Scholar 

  • Harvie CE, Eugster HP, Weare JH (1982) Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25 °C. II: compositions of the saturated solutions. Geochim Cosmochim Acta 9:1603–1618

    Article  Google Scholar 

  • Hazen R (2014) Deep Carbon and False Dichotomies. Elements 10:407–409

    Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK, Kvamme B, Kutznetsova T (2006a) Salt formation associated with sub-surface boiling and supercritical water. Mar Petrol Geol 23:855–869

    Article  Google Scholar 

  • Hovland M, Fichler C, Rueslåtten HG, Johnsen HK (2006b) Deep-rooted piercement structures in deep sedimentary basins—manifestation of supercritical water at depth? J Geochem Explor 89:157–160

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Kutznetsova T, Kvamme B, Fladmark GE, Johnsen HK (2007) Numerical modeling of supercritical ‘out-salting’ in the “Atlantis II Deep” (Red Sea). Open Geol J 1:1–6

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK, Fichler C, Schreiber BC (2011) Hydrothermal evaporites—on Earth and on Mars. International Association of Sedimentologists (IAS) Annual meeting, Alghero, Sardinia, Book of Abstracts

  • Hovland M, Rueslåtten H, Johnsen HK (2014) Buried hydrothermal systems: the potential role of supercritical water, “ScriW”, in various geological processes and occurrences in the sub-Surface. Amer J Anal Chem 5:128–139

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK (2015) Red Sea salt formations—a result of hydrothermal processes. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer, Berlin, pp 187–203

    Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK, Manuella FC (2016) Possible role of salt accumulations. In: Wilson cycles abstract to the Arthur Holmes meeting on Wilson cycles, Geolsoc, London, p 23

    Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene desiccation of the Mediterranean. Nature 242:240–244

    Article  Google Scholar 

  • Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, MacLeod CJ, Integrated ocean drilling program expeditions 304/305 science party (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35:623–626B

    Article  Google Scholar 

  • Jamtveit B, Meakin P (1999) Growth, dissolution and pattern formation in geosystems. Kluwer, Dordrecht, p 409

    Book  Google Scholar 

  • Ji S, Wang Q, Xia B (2002) Handbook of seismic properties of minerals, rocks and ores. Polytechnic International Press, Montreal, p 630

    Google Scholar 

  • Jones KA, Ingham M, Eicken H (2012) Modeling the anisotropic brine microstructure in first-year arctic sea ice. J Geophys Res 117:C02005. doi:10.1029/2011JC007607

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Gee J, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KR, Shipboard Scientific Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30° N. Nature 412:145–149

    Article  Google Scholar 

  • Kelley DS, Früh- Green GL, Karson JA, Ludwig KA (2007) The lost city hydrothermal field revisited. Oceanography 20(4):90–99

    Article  Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Philips D (2011) High abundances of noble gas and chlorine. Nat Geosci 4:807–812

    Article  Google Scholar 

  • Kido Y, Fujioka K, Machida S, Sato H (2002) Present and fossil serpentine diapirs as sources of geophysical anomalies along forearc regions of Izu-Bonin Mariana and southwest Japan. Front Res on Earth Evol 1:341–344

    Google Scholar 

  • Klein F, Bach W, McCollom TM (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178:55–69

    Article  Google Scholar 

  • Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F, Bouillon S (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic hosted vents. Chem Geol 258:299–314

    Article  Google Scholar 

  • L’Heureux I (2013) Self-organized rhythmic patterns in geochemical systems. Phil Trans R Soc (A) 371:1–17

    Google Scholar 

  • Lewis KC, Lowell RP (2004a) Mathematical modeling of phase separation of seawater near an igneous dike. Geofluids 4:197–209

    Article  Google Scholar 

  • Li Z-XA, Lee C-TA (2006) Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: Implications for the recycling rate of water by subduction. Chem Geol 235:161–185

    Article  Google Scholar 

  • Liesegang RE (1886) Ueber einige Eigenschaften von Gallerten. Naturwissentschaftliche Wochenschr 11:353–362

    Google Scholar 

  • MacDonald AH, Fyfe WS (1985) Rate of serpentinization in seafloor environments. Tectonophysics 116:123–135

    Article  Google Scholar 

  • Manuella FC, Carbone F, Ferlito C, Hovland M (2016) Magma–serpentinite interaction as the origin of diatremes: a case study from the Hyblean Plateau (southeastern Sicily). Int J Earth Sci 105:1371–1385

    Article  Google Scholar 

  • Martin W, Russel MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans Roy Soc 362:1887–1925

    Article  Google Scholar 

  • McCollom TM (2013) Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev Mineral Geochem 75:467–494

    Article  Google Scholar 

  • Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res 1:50–72

    Article  Google Scholar 

  • Miranda EA, Dilek Y (2010) Oceanic core complex development in modern and ancient oceanic lithosphere: gabbro–localized versus peridotite–localized detachment models. J Geol 118:95–109

    Article  Google Scholar 

  • Momenzadeh M (1990) Saline deposits and alkaline magmatism: a genetic model. J Petrol Geol 13:341–356

    Article  Google Scholar 

  • Ostwald Wi Lehrbuch der Allgemeinen Chemie, 2. Aufl., Band 2, 2. Teil: Verwandtschaftslehre, Engelmann, Leipzig, 1896–1902, p. 778

  • Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68:1115–1133

    Article  Google Scholar 

  • Perez-Garcia C, Berndt C, Klaeschen D, MienertJ, Haffert L, Depreiter D, Haeckel M (2011) Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz. J Geophys Res 116:B05101

    Article  Google Scholar 

  • Pitzer KS (1991) Theory: ion interaction approach: Theory and data collection. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, 1. CRC Press, Florida, pp 75–153

    Google Scholar 

  • Pitzer KS, Peiper JC, Busey RH (1984) Thermodynamics properties of aqueous sodium chloride solutions. J Phys Chem Data 13:1–102

    Article  Google Scholar 

  • Qin Y, Singh SC (2015) Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean. Nat Commun 6:1–11

    Google Scholar 

  • Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II Deep, Red Sea: evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Mineral 26:765–786

    Google Scholar 

  • Ratcliff DV, Gray SH, Whitmore ND (1992) Seismic imaging of Salt Structures in the Gulf of Mexico. Lead Edge 11:15–22

    Article  Google Scholar 

  • Rona PA, Devey CW., Dyment J, Murton BJ (2010) Diversity of hydrothermal systems on slow spreading ocean ridges. Geophy Monogr Ser 188:350 (ISBN 978-0-87590-478-8)

    Google Scholar 

  • Roveri M, Lugli S, Manzi V, Schreiber BC (2008) The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis. Terra Nova 20:483–488

    Article  Google Scholar 

  • Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V, Sierro FJ, Bertini A, Camerlenghi A, De Lange G, Govers R, Hilgen FJ, Hübscher C, Meijer PTh, Stoica M (2014) The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar Geol 352:25–58

    Article  Google Scholar 

  • Sachan HK, Mukherjee BK, Bodnar RJ (2007) Preservation of methane generated during serpentinization of upper mantle rocks: Evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India). Earth Planet Sci Lett 257:47–59

    Article  Google Scholar 

  • Sadek S, Sultan R (2011) Liesegang patterns in nature: a diverse scenery across the sciences, a review paper. In: Lagzi I (Ed) Precipitation patterns in reaction-diffusion systems. Research Signpost publications, Trivandrum, vol 1, pp 1–43

    Google Scholar 

  • Sanford RF (1981) Mineralogical and chemical effects of hydration reactions and applications to serpentinization. Amer Miner 66:290–297

    Google Scholar 

  • Schoofs S, Hansen U (2000) Depletion of a brine layer at the base of ridge-crest hydrothermal systems. Earth Planet Sci Lett 180:341–353

    Article  Google Scholar 

  • Schreiber BC, Friedman GM, Decima A, Schreiber E (1976) Depositional environment of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentol 23:729–760

    Article  Google Scholar 

  • Schwarzenbach EM, Caddick MJ, Beard JM, Bodnar RJ (2016) Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite. Contrib Miner Petrol 171:5. doi:10.1007/s00410-015-1219-3

    Article  Google Scholar 

  • Seipold U, Schilling FR (2003) Heat transport in serpentinites. Tectonophysics 370:147–162

    Article  Google Scholar 

  • Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254

    Article  Google Scholar 

  • Shearman DJ (1963) Recent anhydrite, gypsum, dolomite and halite from the coastal flats of the Arabian shore of the Persian Gulf. Proceed Geol Soc London 1607:63–64

    Google Scholar 

  • Silantyev SA, Aranovich LYa, Bortnikov NS (2010) Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges. Petrology 18:369–383

    Article  Google Scholar 

  • Silantyev SA, Novoselov AA, Mironenko MV (2011) Hydrothermal systems in peridotites at slow-spreading ridges. Modeling phase transformations and material balance: role of gabbroids. Petrology 19:227–248

    Article  Google Scholar 

  • Slesarenko VV (2001) Heat pumps as a source of heat energy for desalination of seawater. Desalination 139:405–410

    Article  Google Scholar 

  • Snow JE, Edmonds HN (2007) Ultraslow spreading ridges: rapid paradigm changes. Oceanography 20:90–101

    Article  Google Scholar 

  • Sozansky VI (1973) Origin of salt deposits in deep-water basins of Atlantic ocean. Am Assoc Petrol Geol Bull 57:589–595

    Google Scholar 

  • Sultan RF, Abdel-Fattah, Abdel-Rahman m (2013) On dynamic self-organization: examples from magmatic and other geochemical systems. Lat Am J Solids Stru 20:59–73

    Article  Google Scholar 

  • Sun Z, Brown RJ, Lawton DC, Wang Z (1991) Seismic anisotropy and salt detection: A physical modeling study: 61st Ann. Internal. Mtg., Soc. Expl. Geophys., Expanded Abstracts, pp 713–716

  • Tester J, Holgate HR, Armellini FJ, Webley PA, Killilea WR, Hong GT, Berner HE (1993) Supercritical water oxidation technology. In: Emerging technologies in hazardous waste management. Amer Chem Soc 3:35–76

    Google Scholar 

  • Tutolo BM, Mildner DFR, Gagnon CVL, Saar MO, Seyfried WE Jr (2016) Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology 44:103–106

    Article  Google Scholar 

  • Usiglio MJ (1849) Etudes sur la composition de l’eau de la Mediterranee et sur l’exploitation des sels qu’elle contient. Ann Chim Phys, ser. 3, 27:172–191

    Google Scholar 

  • Vanko DA (1986) High-chlorine amphiboles from oceanic rocks: product of highly saline hydrothermal fluids. Am Miner 71:5l–59

    Google Scholar 

  • Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusions. VIII. Vapor-saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456

    Article  Google Scholar 

  • Vanko DA, Stakes DS (1991) Fluids in oceanic layer 3: evidence from veined rocks, Hole 735B, Southwest Indian Ridge. In: Von Herzen RP, Robinson PT et al (eds) Proceedings of the ocean drilling program, scientific results, college station, TX (Ocean Drilling Program), vol 118, pp 181–215

  • Vanko DA, Griffith JD, Erickson CL (1992) Calcium-rich brines and other hydrothermal fluids in fluid inclusions from plutonic rocks, Oceanographer Transform, Mid-Atlantic Ridge. Geochim Cosmochim Acta 56(1):35–47

    Article  Google Scholar 

  • Van’t Hoff JH (1909) Zur Bildung der ozeanischen Salzlagerstätten. Vieweg, Braunschweig

    Google Scholar 

  • Viti C (2010) Serpentine minerals discrimination by thermal analysis. Am Miner 95:631–638

    Article  Google Scholar 

  • Wagner C (1950) Mathematical Analysis of the Formation of Periodic Precipitates. J Colloid Sci 5:85–97

    Article  Google Scholar 

  • Wallmann K, Suess E, Westbrook GH, Winckler G, Cita MB, MEDRIFF Consortium (1997) Salty brines in the Mediterranean sea floor. Nature 387:31–32

    Article  Google Scholar 

  • Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res 13:97–122

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Warren JM, Hirth G (2006) Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet Sci Lett 248:438–450

    Article  Google Scholar 

  • Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge many thanks to R.J. Bodnar for his helpful comments and suggestions. Comments by three anonymous Referees and the Editor were also helpful to improve this paper. We are grateful to M. Wilkinson for his revision of the English language of an early draft of the manuscript. This research was financially supported by Università di Catania, FIR 2014 cod. 2F119B, to VS and SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Scribano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scribano, V., Carbone, S., Manuella, F.C. et al. Origin of salt giants in abyssal serpentinite systems. Int J Earth Sci (Geol Rundsch) 106, 2595–2608 (2017). https://doi.org/10.1007/s00531-017-1448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1448-y

Keywords

Navigation