Skip to main content
Log in

Mantle wedge deformation recorded by high-temperature peridotite fabric superposition and hydrous retrogression (Limo massif, Cabo Ortegal, NW Spain)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Limo harzburgites constitute a hm-thick tectonic stack where extremely elongated meter-scale sheath folds occur, bearing axes parallel to the macroscopic lineation recognized across the whole complex. They can be identified as close to L-type tectonites, with a weak foliation, a well-developed stretching, and a mineral lineation defined by the mineral assemblage in equilibrium. The linear fabric is recognizable at every scale, from aerial photos to the crystallographic orientation of the harzburgite-forming minerals measured by means of the electron back-scatter diffraction technique. These rocks registered initial deformation under high-temperature and low water fugacity conditions at low stress levels in an anhydrous mantle wedge context, as it is inferred from the activity of the [100](010) slip system in olivine. Then, the ongoing eo-Variscan subduction incorporated fluid/melts from the subducting plate into the suprasubduction mantle wedge zone. The variation in the ambient physicochemical conditions led to the operation of the [001](010) slip system in olivine, indicative of lower temperature and higher water fugacity and stress levels. These changes are recorded, too, by synkinematic recrystallization of oriented chlorite. The L-type fabric of clinopyroxene points to constriction conditions during deformation. The active deformational processes continued along the subduction conduit with the thrust of the peridotites onto the high-pressure granulites of the Bacariza Formation. Posteriorly, the whole ensemble would have shared a common deformational history related to exhumation and initial amphibolitization. Subsequent deformation processes under greenschist facies conditions took place until effective continental collision during the Early Carboniferous gave rise to the Variscan orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ábalos B, Azcárraga J, Gil Ibarguchi JI, Mendia MS, Santos Zalduegui JF (1996) Flow stress, strain rate and effective viscosity evaluation in a high-pressure nappe (Cabo Ortegal, Spain). J Metamorph Geol 14:227–248

    Article  Google Scholar 

  • Ábalos B, Puelles P, Gil Ibarguchi JI (2003) Structural assemblage of high-pressure mantle and crustal rocks in a subduction channel (Cabo Ortegal, NW Spain). Tectonics. doi:10.1029/2002TC001405

    Google Scholar 

  • Achenbach K, Cheadle M, Faul U, Kelemen P, Swapp S (2011) Lattice-preferred orientation and microstructure of peridotites from ODP Hole 1274A (15°39′N), Mid-Atlantic Ridge: testing models of mantle upwelling and tectonic exhumation. Earth Planet Sci Lett 301:199–212

    Article  Google Scholar 

  • Arenas R, Díaz García F, Martínez Catalán JR, Abati J, González Cuadra P, Andoanegui P, González del Tánago J, Rubio Pascual F, Castiñeiras P, Gómez Barreiro J (2000) Structure and evolution of the Ordenes Complex. Basement Tectonics 15, Pre-conference field trip. La Coruña, p 160

  • Avé Lallemant HG (1978) Experimental deformation of diopside and websterite. Tectonophysics 48:1–27

    Article  Google Scholar 

  • Azcárraga J, Ábalos B, Gil Ibarguchi JI (2002) On the relationship between km-scale sheath folds, ductile thrusts and minor structures in the basal high-pressure units of the Cabo Ortegal complex (NW Spain). J Struct Geol 24:1971–1989

    Article  Google Scholar 

  • Baratoux L, Schulmann K, Ulrich S, Lexa O (2005) Contrasting microstructures and deformation mechanisms in metagabbro mylonites contemporaneously deformed under different temperatures (c. 650°C and c. 750°C). In: Gapais D, Brun JP, Cobbold PR (eds) Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. J Geol Soc London Spec Publ 243: 97–125

  • Barruol G, Kern H (1996) Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone-experimental and calculated data. Phys Earth Planet In 95:175–194

    Article  Google Scholar 

  • Bascou J, Tommasi A, Mainprice D (2002) Plastic deformation and development of clinopyroxene lattice-preferred orientation in eclogites. J Struct Geol 24:1357–1368

    Article  Google Scholar 

  • Bass JD (1995) Elasticity of minerals, glasses and melts. In: Ahrens TJ (ed) Handbook of physical constants: mineral physics and crystallography. AGU, Washington, pp 45–63

    Chapter  Google Scholar 

  • Ben Jamaa N (1988) Les peridotites de Bay of Islands (Terre Neuve) et de Cap Ortegal (Espagne): approche petro-structurale. Dissertation, Université Paris

  • Berger A, Stünitz H (1996) Deformation mechanisms and reaction of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics 257:149–174

    Article  Google Scholar 

  • Biermann C (1981) (100) deformation twins in naturallydeformed amphiboles. Nature 292:821–823

    Article  Google Scholar 

  • Biermann C, van Roermund HLM (1983) Defect structures in naturally deformed clinoamphibole—a TEM study. Tectonophysics 95:267–278

    Article  Google Scholar 

  • Bons J (1988) Deformation of chlorite in naturally deformed low-grade rocks. Tectonophysics 154:149–165

    Article  Google Scholar 

  • Boundy TM, Fountain DM, Austrheim H (1992) Structural development and petrofabrics of eclogite facies shear zones, Bergen Arcs, western Norway: implications for deep crustal deformational processes. J Metamorph Geol 10:127–146

    Article  Google Scholar 

  • Buatier M, van Roermund HLM, Drury MR, Lardeaux JM (1991) Deformation and recrystallization mechanisms in naturally deformed omphacites from the Sesia-Lanzo zone: geophysical consequences. Tectonophysics 195:11–27

    Article  Google Scholar 

  • Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Cordellier F, Boudier F, Boullier AM (1981) Structural study of the Almklovdalen peridotite massif (Southern Norway). Tectonophysics 77:257–281

    Article  Google Scholar 

  • Cumbest R, van Roermund HLM, Drury MR, Simpson C (1989) Burgers vector determination in clinoamphibole by computer simulation. Am Miner 74:586–592

    Google Scholar 

  • Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Miner Petrol 140:353–362

    Article  Google Scholar 

  • Dallmeyer RD, Martínez Catalán JR, Arenas R, Gil Ibarguchi JI, Gutiérrez Alonso G, Farias P, Bastida F, Aller J (1997) Diachronous variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337

    Article  Google Scholar 

  • Darot M, Gueguen Y (1981) High-temperature creep of forsterite single crystals. J Geophys Res 86(B7):6219–6234

    Article  Google Scholar 

  • Díaz Azpiroz M, Lloyd GE, Fernández C (2007) Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions—a SEM/EBSD study of metabasites from the Aracena metamorphic belt, SW Spain. J Struct Geol 29:629–645

    Article  Google Scholar 

  • Dollinger G, Blacic JD (1975) Deformation mechanisms in experimentally and naturally deformed amphiboles. Earth Planet Sci Lett 26:409–416

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner Mag 51:431–435

    Article  Google Scholar 

  • Durham WB, Goetze C, Blake B (1977) Plastic flow of oriented single crystals of olivine: observations and interpretations of dislocation structures. J Geophys Res 82(36):5755–5770

    Article  Google Scholar 

  • Etheridge MA (1975) Deformation and recrystallization of orthopyroxene from Giles Complex, Central Australia. Tectonophysics 25:87–114

    Article  Google Scholar 

  • Gapais D, Brun JP (1981) A comparison of mineral grain fabrics and finite strain in amphibolites from eastern Finland. Can J Earth Sci 18:995–1003

    Article  Google Scholar 

  • García de Madinabeitia S, Sánchez Lorda ME, Gil Ibarguchi JI (2008) Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal Chim Acta 625(2):117–130

    Article  Google Scholar 

  • García Izquierdo B (2005) Evolución geodinámica y procesos mantélicos en el Macizo de Herbeira, complejo de Cabo Ortegal (NO de la Península Ibérica). Dissertation, Universidad Complutense de Madrid

  • Gil Ibarguchi JI, Ábalos B, Azcárraga J, Mendia M, Puelles P (2000) A petrological and structural excursion through the high-grade/high-pressure allochthonous units of the Cabo Ortegal Complex (NW Spain). In: Basement Tectonics 15, Mid-conference field trip. La Coruña, pp 1–59

  • Girardeau J, Gil Ibarguchi JI (1991) Pyroxenite-rich peridotites of the Cabo Ortegal Complex (Northwestern Spain): evidence for large-scale upper-mantle heterogeneity. J Petrol Special Lherzolites Issue, pp 135–154

  • Girardeau J, Gil Ibarguchi JI, Ben Jamaa N (1989) Evidence for a heterogeneous upper mantle in the Cabo Ortegal Complex, Spain. Science 245:1231–1233

    Article  Google Scholar 

  • Godard G, van Roermund L (1995) Deformation-induced clinopyroxenes fabrics from eclogites. J Struct Geol 17(10):1425–1443

    Article  Google Scholar 

  • Gravestock PJ (1992) The chemical causes of uppermost mantle heterogeneities. Dissertation, Open University

  • Hacker BR, Christie JM (1990) Brittle/ductile and plastic/cataclastic transition in experimentally deformed and metamorphosed amphibolite. In: Duba AG, Durham WB, Handin JW, Wang HF (eds) The brittle-ductile transition in rocks. AGU, Geophysical Monograph, pp 127–148

  • Helmstaedt H, Anderson OL, Gavasci AT (1972) Petrofabric studies of eclogite, spinel-websterite, and spinel-lherzolite xenoliths from kimberlite-bearing breccia pipes in southeastern Utah and northeastern Arizona. J Geophys Res 77:4350–4365

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J Geophys Res 100:1981–2001

    Article  Google Scholar 

  • Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory. AGU, Geophysical Monograph: 138. Washington, pp 88–105

  • Holland TJB, Powell R (1996) Thermodynamics of order–disorder in minerals. Symmetric formalism applied to solid solutions. Am Miner 81:1425–1437

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Baker J, Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406

    Google Scholar 

  • Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230

    Article  Google Scholar 

  • Imon R, Okudaira T, Fujimoto A (2002) Dissolution and precipitation processes in the deformed amphibolites: an example from the ductile shear zone of the Ryoke metamorphic belt, SW Japan. J Metamorph Geol 20:297–308

    Article  Google Scholar 

  • Ivankina TI, Kern HM, Nikitin AN (2005) Directional dependence of P- and S-wave propagation and polarization in foliated rocks from the Kola superdeep well: evidence from laboratory measurements and calculations based on TOF neutron diffraction. Tectonophysics 407:25–42

    Article  Google Scholar 

  • Ji S, Salisbury MH, Hammer S (1993) Petrofabric, P-wave anisotropy and seismic reflectivity of high-grade tectonites. Tectonophysics 222:195–226

    Article  Google Scholar 

  • Jung H (2009) Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos 109:341–349

    Article  Google Scholar 

  • Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463

    Article  Google Scholar 

  • Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22

    Article  Google Scholar 

  • Jung H, Mo W, Green HW (2009) Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat Geosci 2:73–77

    Article  Google Scholar 

  • Jung H, Park M, Jung S, Lee J (2010) Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. J Earth Sci 21:555–568

    Article  Google Scholar 

  • Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778

    Article  Google Scholar 

  • Karato S, Paterson M, Fitzgerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91:8151–8176

    Article  Google Scholar 

  • Katayama I, Jung H, Karato S (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048

    Article  Google Scholar 

  • Kenkmann T, Dresen G (2002) Dislocation microstructure and phase distribution in a lower crustal shear zone: an example from the Ivrea Zone, Italy. Int J Earth Sci 91:445–458

    Article  Google Scholar 

  • Kneller EA, van Keken PE, Katayama I, Karato S (2007) Stress, strain, and B-type olivine fabric in the fore-arc mantle: sensitivity tests using high-resolution steady-state subduction zone models. J Geophys Res Solid Earth 112:B004406

    Article  Google Scholar 

  • Kohlstedt DL, Goetze C (1974) Low-stress high-temperature creep in olivine single crystals. J Geophys Res 79(14):2045–2051

    Article  Google Scholar 

  • Kruhl JH, Huntemann T (1991) The structural state of the former lower continental crust in Calabria (S. Italy). Geol Rundsch 81:289–302

    Article  Google Scholar 

  • Laribi-Halimi A (1992) Relations géochimiques dans les péridotites et pyroxénites du Cabo Ortegal (Espagne): Application de l’analyse par activation neutronique. Dissertation, Université de Paris VI-IPGP

  • Lee KH, Jiang Z, Karato S (2002) A scanning electron microscope study of the effects of dynamic recrystallization on lattice preferred orientation in olivine. Tectonophysics 351:331–341

    Article  Google Scholar 

  • Maaskant P (1970) Chemical petrology of polymetamorphic ultramafic rocks from Galicia, NW Spain. Leidse Geol Meded 45:237–255

    Google Scholar 

  • Machek M, Ulrich S, Janousek V (2009) Strain coupling between upper mantle and lower crust: natural example from the Bestvina granulite body, Bohemian Massif. J Metamorph Geol 27:721–737

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single-crystals. J Geophys Res Solid Earth 90:1319–1333

    Article  Google Scholar 

  • Mainprice D, Tommasi A, Couvy H, Cordier P, Frost DJ (2005) Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature 433:731–733

    Article  Google Scholar 

  • Marcos A, Farias P, Galán G, Fernández FJ, Llana Fúnez S (2002) Tectonic framework of the Cabo Ortegal Complex: a slab of lower crust exhumed in the Variscan orogen (northwestern Iberian Peninsula). Geol Soc Am Special Pap 364:143–162

    Google Scholar 

  • Martínez Catalán JR, Arenas R, Díaz García F, Abati J (1997) Variscan accretionary complex of northwest Iberia: terrane correlation and succession of tectonothermal events. Geology 25:1103–1106

    Article  Google Scholar 

  • Mauler A, Godard G, Kunze K (2001) Crystallographic fabrics of omphacite, rutile and quartz in Vendeé eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342:81–112

    Article  Google Scholar 

  • Mendia M, Gil Ibarguchi JI, Ábalos B (2001) Evolución metamórfica P-T-d-t y significado geodinámico de la unidad eclogítica del complejo de Cabo Ortegal (NO España). Cuad Labo Xeol Laxe 26:155–178

    Google Scholar 

  • Mizukami T, Wallis SR, Yamamoto J (2004) Natural examples of olivine lattice preferred orientation patterns with a flow normal a-axis maximum. Nature 427:432–436

    Article  Google Scholar 

  • Moreno T, Gibbons W, Prichard HM, Lunar R (2001) Platiniferous chromitite and the tectonic settings of ultramafic rocks in Cabo Ortegal, NW Spain. J Geol Soc Lond 158:601–614

    Article  Google Scholar 

  • Morimoto N (1989) Nomenclature of pyroxenes. Can Miner 27:143–156

    Google Scholar 

  • Nicolas A (1986) A melt extraction model based on structural studies in peridotites. J Petrol 27:999–1022

    Google Scholar 

  • Ordóñez Casado B, Gebauer D, Schäfer HJ, Gil Ibarguchi JI, Peucat JJ (2001) A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 332:359–385

    Article  Google Scholar 

  • Peacock SM (1993) Large-scale hydration of the lithosphere above subducting slabs. Chem Geol 108:49–59

    Article  Google Scholar 

  • Peucat JJ, Bernard-Griffiths J, Gil Ibarguchi JI, Dallmeyer RD, Menot RP, Cornichet J, Iglesias Ponce de León M (1990) Geochemical and geochronological cross section of the deep variscan crust: the Cabo Ortegal high-pressure nappe (NW Spain). In: Matte Ph (ed) Terranes in the Variscan Belt of Europe and Circum-Atlantic Paleozoic Orogens. Tectonophysics 177:263–292

  • Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Potts GJ, Reddy S, Spiess R, Timms N, Trimby P, Wheeler J, Zetterstrom L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Miner 84:1741–1759

    Google Scholar 

  • Puelles P (2004) Deformación, metamorfismo y exhumación de las granulitas de alta presión de la Bacariza (Complejo de Cabo Ortegal, NO España). Nova Terra 23, Ediciós do Castro, Spain

  • Puelles P, Ábalos B, Gil Ibarguchi JI (2005) Metamorphic evolution and thermobaric structure of the subduction-related Bacariza high-pressure granulite formation (Cabo Ortegal Complex, NW Spain). Lithos 84:125–149

    Article  Google Scholar 

  • Reynard B, Gillet P, Williame C (1989) Deformation mechanisms in naturally deformed glaucophanes: a TEM and HREM study. Eur J Miner 1:611–624

    Google Scholar 

  • Rooney TP, Riecker RE, Gavasci AT (1975) Hornblende deformation features. Geology 3:364–366

    Article  Google Scholar 

  • Ross JV, Nielsen KC (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44:233–261

    Article  Google Scholar 

  • Santos Zalduegui JF, Schäfer U, Gil Ibarguchi JI, Girardeau J (1996) Origin and evolution of the Paleozoic Cabo Ortegal ultramafic-mafic complex (NW Spain): U-Pb, Rb-Sr and Pb–Pb data. Chem Geol 129:281–306

    Article  Google Scholar 

  • Santos Zalduegui JF, Schäfer U, GilI barguchi JI, Girardeau J (2002) Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb-Sr-Nd isotope data. J Petrol 43:17–43

    Article  Google Scholar 

  • Sawaguchi T, Ishii K (2003) Three-dimensional numerical modeling of lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites. J Struct Geol 25:1425–1444

    Article  Google Scholar 

  • Shelley D (1994) Spider texture and amphibole preferred orientation. J Struct Geol 16:709–717

    Article  Google Scholar 

  • Siegesmund S, Takeshita T, Kern H (1989) Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical microstructural and textural characteristics of the rock. Tectonophysics 157:25–38

    Article  Google Scholar 

  • Siegesmund S, Helmig K, Kruse R (1994) Complete texture analysis of a deformed amphibolite: comparison between neutron diffraction and U-stage data. J Struct Geol 16:131–142

    Article  Google Scholar 

  • Skemer P, Katayama I, Karato S (2006) Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib Miner Petrol 152:43–51

    Article  Google Scholar 

  • Skrotzki W (1990) Microstructure in hornblende of a mylonitic amphibolite. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics. J Geol Soc Lond Spec Publ 54:321–325

  • Skrotzki W (1992) Defect structures and deformation mechanisms in naturally deformed hornblende. Phys Status Solidi 131:605–624

    Article  Google Scholar 

  • Song S, Su L (1998) Rheological properties of mantle peridotites at Yushigou in the North Qilian Mountains and their implications for plate dynamics. Acta Geol Sin (English Edition) 72:131–141

    Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Ionov A (2010) Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J Petrol 51:363–394

    Article  Google Scholar 

  • Tatham D, Lloyd G, Butler R, Casey M (2008) Amphibole and lower crustal seismic properties. Earth Planet Sci Lett 267:118–128

    Article  Google Scholar 

  • Van Calsteren PWC, Boelrijk NAIM, Hebeda EH, Priem HNA, Den Tex E, Verdurmen EAT, Verschure RH (1979) Isotopic dating of older elements (including the Cabo Ortegal mafic-ultramafic complex) in the Hercynian orogen of NW Spain: manifestations of a presumed early Palaeozoic mantle-plume. Chem Geol 24:35–56

    Article  Google Scholar 

  • Vogel DE (1967) Petrology of eclogite- and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain. Leidse Geol Meded 40:121–213

    Google Scholar 

  • Zhang SQ, Karato S (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777

    Article  Google Scholar 

  • Zimmerman ME, Kohlstedt DL (2004) Rheological properties of partially molten lherzolite. J Petrol 45(2):275–298

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Spanish Ministerio de Ciencia e Innovación (Grupo Consolidado, project CGL2008-01130/BTE) and the Universidad del País Vasco (project GIU09/61). The authors also want to express their appreciations to F. Deschamps and an anonymous reviewer for critically reading the manuscript and making several useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Puelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puelles, P., Gil Ibarguchi, J.I., Beranoaguirre, A. et al. Mantle wedge deformation recorded by high-temperature peridotite fabric superposition and hydrous retrogression (Limo massif, Cabo Ortegal, NW Spain). Int J Earth Sci (Geol Rundsch) 101, 1835–1853 (2012). https://doi.org/10.1007/s00531-012-0761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0761-8

Keywords

Navigation