Skip to main content
Log in

Provenance of late Palaeozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albarède F, Brouxel M. (1987) The Sm/Nd secular evolution of the continental crust and the depleted mantle. Earth Planet Sci Lett 82:25–35

    Article  Google Scholar 

  • Augustsson C, Bahlburg H (2003a) Active or passive margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30′-48°30′S). In: McCann T, Saintot A (eds). Tracing tectonic deformation using the sedimentary record, vol 208. Geological Society, Special Publication, London, pp 253–268

  • Augustsson C, Bahlburg H (2003b) Cathodoluminescence spectra of detrital quartz as provenance indicators for Paleozoic metasediments in southern Andean Patagonia. J S Am Earth Sci 16:15–26

    Article  Google Scholar 

  • Augustsson C, Münker C, Bahlburg H, Fanning CM (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. J Geol Soc Lond 163:983–995

    Article  Google Scholar 

  • Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geol Soc Am Bull 109:869–884

    Article  Google Scholar 

  • Bell CM, Suárez M (2000) The Río Lácteo Formation of Southern Chile. Late Paleozoic orogeny in the Andes of southernmost South America. J S Am Earth Sci 13:133–145

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193

    Article  Google Scholar 

  • Burke WH, Denison RE, Heatherington EA, Koepnik RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Article  Google Scholar 

  • Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front range, Colorado, USA. Geochim Cosmochim Acta 59:279–294

    Article  Google Scholar 

  • Cox R, Lowe DR (1996) Quantification of the effects of secondary matrix on the analysis of sandstone composition, and a petrographic-chemical technique for retrieving original framework grain modes of altered sandstones. J Sed Res 66:548–558

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Dobrzinski N (2001) Petrographie und Geochemie der paläozoischen Sedimente in S-Chile zwischen dem 48° und 51°S. Diploma Thesis, Westfäliche Wilhelms-Universität Muenster, pp 1–58

  • Douglass RC, Nestell MK (1976) Late Paleozoic foraminafera from southern Chile. US Geol Surv Prof Pap 858:1–47

    Google Scholar 

  • Escobar F (ed) (1980) Mapa Geológico de Chile. Servicio Nacional de Geología y Minería, 1:1 000 000

  • Fang Z, Boucot A, Covacevich V, Hervé F, (1998) Discovery of Late Triassic fossils in the Chonos Metamorphic Complex, Southern Chile. Revista Geológica de Chile 25:165–174

    Google Scholar 

  • Faúndez V, Hervé F, Lacassie JP (2002) Provenance and depositional setting of pre-Late Jurassic turbidite complexes in Patagonia, Chile. NZ J Geol Geophys 45:411–425

    Google Scholar 

  • Forsythe R (1982) The late Palaeozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. J Geol Soc London 139:671–682

    Google Scholar 

  • Fortey R, Pankhurst RJ, Hervé F (1992) Devonian Trilobites at Buill, Chiloé (42°S). Revista Geológica de Chile 19:133–143

    Google Scholar 

  • Galloway WE (1974) Deposition and diagenetic alteration of sandstone in northeast Pacific arc-related basins: implications for graywacke genesis. Geol Soc Am Bull 85:379–390

    Article  Google Scholar 

  • Goldstein SL, O′Nions RK, Hamilton PJ (1984) A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Article  Google Scholar 

  • Hallsworth CR, Morton AC, Claoué-Long J, Fanning CM (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sed Geol 137:147–185

    Article  Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Miner 70:1–15

    Google Scholar 

  • Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Miner Petrol 112:203–218

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds). Boron—mineralogy, petrology and geochemistry. Rev Miner 33:503–558

  • Hervé F, Demant A, Ramos VA, Pankhurst RJ, Suárez M (2000) The southern Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds). Tectonic evolution of South America. 31st International Geological Congress, pp 605–634

  • Hervé F, Fanning CM, Pankhurst RJ (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J S Am Earth Sci 16:107–123

    Article  Google Scholar 

  • Lagally U (1975) Geologische Untersuchungen im Gebiet Lago General Carrera - Lago Cochrane, Prov. Aisén/Chile unter besonderer Berücksichtigung des Grundgebirges und seiner Tektonik. Dissertation, Ludwig-Maximilians-Universität, München, pp 1–131

    Google Scholar 

  • Leanza AF (1972) Andes patagónicos australes. In: Leanza AF (ed) Geología regional argentina. Academia Nacional de Ciencias, Córdoba, pp 689–706

    Google Scholar 

  • Ling HY, Forsythe RD (1987) Late Paleozoic pseudoalbaillellid radiolarians from southernmost Chile and their geological significance. In: McKenzie DG (ed) Gondwana Six: structure, tectonics and geophysics. Geophysical Monograph 40:253–260

  • Ling HY, Forsythe RD, Douglas RC (1985) Late Paleozoic microfaunas from southernmost Chile and their relation to Gondwanaland forearc development. Geology 13:357–360

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Miner 21:169–200

    Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, geophysics, geosystems (G3) 2, pp 1–24. DOI http://dx.doi.org/10.1029/2000GC000109

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett JK, Zuffa GG (eds). Marine clastic sedimentology. Graham & Trotman, London, pp 1–38

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • O’Nions RK, Hamilton PJ, Evensen NM (1977) Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet Sci Lett 34:13–22

    Article  Google Scholar 

  • Potter PE (1994) Modern sands of South America: composition, provenance and global significance. Geol Rundsch 83:212–232

    Article  Google Scholar 

  • Ramírez-Sánchez E, Hervé F, Kelm U, Sassi R (2005) P-T conditions of metapelites from metamorphic complexes in Aysen. J S Am Earth Sci 19:373–386

    Article  Google Scholar 

  • Ramos VA (1989) Andean foothills structures in northern Magellanes Basin, Argentina. Am Assoc Pet Geol Bull 73:887–903

    Google Scholar 

  • Riccardi AC (1971) Estratigrafía en el oriente de la Bahía de la Lancha, Lago San Martín, Santa Cruz, Argentina. Revista del Museo de La Plata (nueva serie), Sección Geología 7:245–318

    Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone—mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Shaw HF, Wasserburg GJ (1982) Age and provenance of the target materials for tectites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth Planet Sci Lett 60:155–177

    Article  Google Scholar 

  • Sircombe KN (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sed Geol 124:47–67

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Submission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stille P, Shields G (1997) Radiogenic isotope geochemistry of sedimentary and aquatic systems. Lecture Notes Earth Sci 68:1–271

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–312

    Google Scholar 

  • Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52°S). Revista Geológica de Chile 29:255–271

    Google Scholar 

  • von Eynatten H, Wijbrans JR (2003) Precise tracing of exhumation and provenance using 40Ar/39Ar geochronology of detrital white mica: the example of the Central Alps. In: McCann T, Saintot A (eds). Tracing tectonic deformation using the sedimentary record, vol. 208. Geological Society, Special Publication, London, pp 289–305

  • Whitmore GP, Crook KAW, Johnson DP (2004) Grain size control of mineralogy and geochemistry in modern river sediments, New Guinea collision, Papua New Guinea. Sed Geol 171:129–157

    Article  Google Scholar 

  • Willner AP (1987) Detrital tourmalines as indicators for the source rocks of Late Precambrian–Lower Cambrian greywackes (Puncoviscana Formation) in NW Argentina. Zbl Geol Paläont Teil I 1987:885–891

    Google Scholar 

  • Willner AP, Hervé F, Massonne H-J (2000) Mineral chemistry and pressure-temperature evolution of two contrasting high-pressure - low-temperature belts in the Chonos Archipelago, southern Chile. J Petrol 41:309–330

    Article  Google Scholar 

  • Willner AP, Ermolaeva T, Stroink L, Glasmacher UA, Giese U, Puchkov VN, Kozlov VI, Walter R (2001) Contrasting provenance signals in Riphean and Vendian sandstones in the SW Urals (Russia): constraints for a change from passive to active continental margin conditions in the Neoproterozoic. Precamb Res 110:215–239

    Article  Google Scholar 

  • Willner AP, Hervé F, Thomson SN, Massonne H-J (2004) Converging P-T paths of Mesozoic HP-LT metamorphic units (Diego de Almagro Island, Southern Chile): evidence for juxtaposition during late shortening of an active continental margin. Miner Petrol 81:43–84

    Article  Google Scholar 

  • Willner AP, Thomson SN, Kröner A, Wartho J-A, Wijbrans JR, Hervé F (2005) Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in north-central Chile (34°-35°30′S). J Petrol 46:1835–1858

    Article  Google Scholar 

  • Yoshida K (1981) Estudio geológico del curso superior del río Baker, Aysén, Chile (47°05′ a 47°42′ Lat. S., 72°28′ a 73°15′ Long. W.). Dissertation, Universidad de Chile, Santiago, pp 1–341

    Google Scholar 

  • Zack T, von Eynatten H, Kronz A (2004) Rutile geochemistry and its potential use in quantitative provenance studies. Sed Geol 171:37–58

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; grants Ba 1011/17-1, -2 and -3). Juan-Pablo Lacassie and Nicole Dobrzinski are acknowledged for rock samples. Mukul Bhatia, Keith Crook, Hilmar von Eynatten and Arne Willner are thanked for valuable comments on earlier versions of the paper and Ralph O Howard Jr is acknowledged for checking the English grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carita Augustsson.

Appendix: norm calculations

Appendix: norm calculations

The following steps have been modified from (steps 5c and 5d) or added to (step 7) the norm calculations of Cox and Lowe (1996):

(5c) All Na2O is assigned to albite if Na2O < 6 SiO2. Otherwise use all SiO2. In both cases, use Na2O, Al2O3 and SiO2 in the ratio 1:1:6.

(5d) CaO is assigned to anorthite as in the following protocol: if remaining SiO2 > 2 CaO, use all CaO. If SiO2 < 2 Al2O3, use all SiO2. If CaO < Al2O3, use all CaO. If CaO > Al2O3 use all Al2O3. In either case, use CaO, Al2O3 and SiO2 in the ratio 1:1:2.

(7) Conversion to vol% by division of wt% data with mineral density and normalisation to 100%.

(5c) and (5d) were modified due to large resulting deficits in SiO2 and CaO for some of the Patagonian metasediments when Cox and Lowe’s (1996) original recalculation scheme was used. Note that the new scheme can result in a surplus of Na2O. (7) makes a direct comparison of the results with point-count data possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustsson, C., Bahlburg, H. Provenance of late Palaeozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina). Int J Earth Sci (Geol Rundsch) 97, 71–88 (2008). https://doi.org/10.1007/s00531-006-0158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0158-7

Keywords

Navigation