Skip to main content

Advertisement

Log in

Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S Germany): a multi-method approach

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian–lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ∼15–16°C (MAT), coldest month mean temperature ∼7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ∼1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey IW, Sinnott EW (1915) A botanical index of cretaceous and tertiary climates. Science 41:831–834

    Article  Google Scholar 

  • Bailey IW, Sinnott EW (1916) The climatic distribution of certain types of angiosperm leaves. Am J Bot 42:24–39

    Article  Google Scholar 

  • Böhme M (2003) The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401

    Article  Google Scholar 

  • Bruch AA (1998) Palynologische Untersuchungen im Oligozän Sloweniens–Paläo-Umwelt und Paläoklima im Ostalpenraum. Tübinger Mikropaläontologische Mitteilungen 18:193pp

  • Burnham RJ, Pitman NCA, Johnson KR, Wilf P (2001) Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. Am J Bot 88:1096–1102

    PubMed  Google Scholar 

  • Chaloner WG, Creber GT (1990) Do fossil plants give a climatic signal? J Geol Soc 147:343–350

    Google Scholar 

  • Ferguson DK (1985) The origin of leaf-assemblages–new light on an old problem. Rev Palaeobot Palynol 46:117–188

    Article  Google Scholar 

  • Giersch S (2004) Die Fauna aus den mittelmiozänen Krokodilschichten der Bohlinger Schlucht–Ein Beitrag zur Paläoökologie und Biostratigraphie der Oberen Süßwassermolasse am Schiener Berg (Baden-Württemberg). Carolinea 62:5–50

    Google Scholar 

  • Greenwood DR, Wilf P, Wing SL, Christophel DC (2004) Paleotemperature estimation using leaf-margin analysis: Is Australia different? Palaios 19:129–142

    Google Scholar 

  • Gregor H-J (1982) Die jungtertiären Floren Süddeutschlands. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Gregor H-J (1989) Versuch eines neuen Klima-Modells für die Zeit der Oberen Meeres- Süßwasser-Molasse in Bayern. Documenta naturae 46:34–47

    Google Scholar 

  • Gregor H-J, Hantke R (1980) Revision der fossilen Leguminosengattung Podogonium heer (= Gleditsia linne) im europäischen Jungtertiär. Feddes Repert 91:151–182

    Google Scholar 

  • Hantke R (1954) Die fossile Flora der obermiozänen Oehninger-Fundstelle Schrotzburg. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 80:27–118

    Google Scholar 

  • Hantke R (1965) Die fossilen Eichen und Ahorne aus der Molasse der Schweiz und von Oehningen (Süd-Baden). Neujahrsblatt der Naturforschenden Gesellschaft Zürich 1965:108

    Google Scholar 

  • Hantke R (1966) Die fossilen Liquidambar-Reste (Amberbaum) aus der Molasse der Schweiz und von Oehningen (Südbaden). Eclogae Geol Helv 59:981–988

    Google Scholar 

  • Hantke R (1980) Die Bedeutung der als ausgestorben betrachteten Leguminosen-Gattung Podogonium heer (Gleditsia L.) für die Obere Süßwassermolasse und für die Vogesenschüttung im Delsberger Becken (Jura). Eclogae Geol Helv 73:1031–1043

    Google Scholar 

  • Heer O (1855) Flora tertiara Helvetiae I. Verlag von Wurster und Comp., Winterthur, 116p

  • Heer O (1856) Flora tertiara Helvetiae II. Verlag von Wurster und Comp., Winterthur, 110p

  • Heer O (1859) Flora tertiara Helvetiae III. Verlag von Wurster und Comp., Winterthur, 378p

  • Herendeen PS (1992a) A reevaluation of the fossil genus Podogonium Heer. In: Herendeen PS, Dilcher DL (eds) Advances in Legume Systematics: Part 4. The fossil record. The Royal Botanical Gardens, Kew, pp 3–18

    Google Scholar 

  • Herendeen PS (1992b) Podocarpium podocarpum comb. nov., the correct name for Podogonium knorrii Heer, nom. illeg. (fossil Fabaceae). Taxon 41:731–736

    Article  Google Scholar 

  • Herman AB, Spicer RA (1997) New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeogr Palaeoclimatol Palaeoecol 128:227–251

    Article  Google Scholar 

  • Hutchinson JH (1982) Turtle, crocodilian, and champsosaur diversity changes in the Cenozoic of the north-central region of Western United States. Palaeogeogr Palaeoclimatol Palaeoecol 37:149–164

    Article  Google Scholar 

  • Ivanov D, Ashraf AR, Mosbrugger V, Palamarev E (2002) Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 178:19–37

    Article  Google Scholar 

  • Jones TP, Rowe NP (eds) (1999) Fossil plants and spores: modern techniques. Geological Society London, 408pp

  • Kershaw AP (1997) A bioclimatic analysis of early to Middle Miocene brown coal floras, Latrobe Valley, South-Eastern Australia. Aust J Bot 45:373–387

    Article  Google Scholar 

  • Kershaw AP, Nix HA (1988) Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant data. J Biogeogr 15:589–602

    Article  Google Scholar 

  • Klotz S (1999) Neue Methoden der Klimarekonstruktion—angewendet auf quartäre Pollensequenzen der französischen Alpen. Tübinger Mikropaläontologische Mitteilungen 21:169

    Google Scholar 

  • Klotz S, Guiot J, Mosbrugger V (2003) Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Glob Planet Change 36:277–294

    Article  Google Scholar 

  • Kovar-Eder J, Kvaček Z, Ströbitzer-Hermann M (2004) The Flora of Parschlug (Styria, Austria)—Revision and Synthesis. Annalen des Naturhistorischen Museums Wien 105 A:45–157

    Google Scholar 

  • Kowalski EA (2002) Mean annual temperature astimation based on leaf morphology: a test from tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 188:141–165

    Article  Google Scholar 

  • Kowalski EA, Dilcher DL (2003) Warmer paleotemeratures for terrestrial ecosystems. Proc Natl Acad Sci 100:167–170

    Article  PubMed  Google Scholar 

  • Kvaček Z, Walther H (2004) Oligocene Flora of Bechlejovice ar Decin from the neovolcanic area of the Ceske Stredohori mountains, Czech Republic. Acta Musei Nationalis Pragae, Series B, Natural History 60:9–60

    Google Scholar 

  • Kvaček Z, Velitzelos D, Velitzelos E (2002) Late Miocene Flora of Vegora, Macedonia, N. Greece. University of Athens, Athens Greece, p 175

    Google Scholar 

  • Liang M-M, Bruch A, Collinson M, Mosbrugger V, Li, Ch-S, Sun Q-G, Hilton J (2003) Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shangwang flora of China. Palaeogeogr Palaeoclimatol Palaeoecol 198:279–301 (doi:10.1016/S0031-0182(03)00471-1)

    Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena

    Google Scholar 

  • Mai DH, Walther H (1978) Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig) DDR. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 28:1–200

    Google Scholar 

  • Mai DH, Walther H (1985) Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 33:1–260

    Google Scholar 

  • Markwick PJ (1998) Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 137:205–271

    Article  Google Scholar 

  • Mosbrugger V (1999) The nearest living relative method. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 261–265

    Google Scholar 

  • Mosbrugger V, Schilling H-D (1992) Terrestrial paleoclimatology in the Tertiary: a methodological critique. Palaeogeogr Palaeoclimatol Palaeoecol 99:17–29

    Article  Google Scholar 

  • Mosbrugger V, Utescher T (1997) The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86

    Article  Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. Proc Natl Acad Sci 102:14964–14969 (doi:10.1073/pnas.0505267102)

    Google Scholar 

  • Neill WT (1971) The last of the Ruling Reptiles: Alligators, Crocodiles, and Their Kin. Columbia University Press, New York, NY, p 486

    Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing 20th century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856

    Article  Google Scholar 

  • Nötzold T (1956) Baptisiaecarpum schrotzburgense n. gen., hülsenartige Früchte aus dem Obermiozän bei der Schrotzburg am Bodensee. Mitteilungen des badischen Landesvereins für Naturkunde und Naturschutz, N.F. 6:372–379

    Google Scholar 

  • Nötzold T (1957) Miozäne Pflanzenreste von der Schrotzburg am Bodensee. Berichte der Naturforschenden Gesellschaft zu Freiburg 47:71–102

    Google Scholar 

  • Pingen M, Ferguson DK, Collinson ME (1994) Homalanthus costatus Mai: a new Miocene fruit of Cinnamomum Schaeffer (Lauraceae). Palaeontographica B 232:155–174

    Google Scholar 

  • Pross J, Bruch A, Kvaček Z (1998) Paläoklima-Rekonstruktionen für den Mittleren Rupelton (Unter-Oligozän) des Mainzer Beckens auf der Basis mikro- und makrobotanischer Befunde. Mainzer geowissenschaftliche Mitteilungen 27:79–92

    Google Scholar 

  • Roth-Nebelsick A, Utescher T, Mosbrugger V, Diester-Haass L, Walther H (2004) Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeogr Palaeoclimatol Palaeoecol 205:43–67 (doi:10.1016/j.palaeo.2003.11.014)

    Google Scholar 

  • Rutte E (1956) Die Geologie des Schienerberges (Bodensee) und der Öhninger Fundstätten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 102:143–282

    Google Scholar 

  • Schreiner A (1992) Erläuterungen zur Geologischen Karte des Landkreises Konstanz und Umgebung 1:50.000. Geologisches Landesamt Baden-Württemberg, Freiburg

    Google Scholar 

  • Spicer RA (1981) The sorting and deposition of allochthonous plant material in a modern environment at silwood Lake, Silwood Park, Berkshire, England. US Geol Surv Prof Paper 1143:77p

  • Spicer RA (1991) Plant taphonomic processes. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the Fossil Record. Topics in Geobiology 9:71–113

  • Steffen W, Sanderson A, Tyson PD, Jäger J, Matson PA, Moore B III, Oldfield F, Richardson K, Schellnhuber HJ, Turner BL II, Wasson RJ (2004) Global change and the earth system—a planet under pressure. Springer, Berlin Heidelberg New York, p 336

    Google Scholar 

  • Traiser C (2004) Blattphysiognomie als Indikator für Umweltparameter: eine Analyse rezenter und fossiler Floren. Unpubl. Ph.D. Thesis, University of Tübingen, IV, p 113 (URN: urn:nbn:de:bsz:21-opus-14947)

  • Traiser C, Klotz S, Uhl D, Mosbrugger V (2005) Environmental signals from leaves—a physiognomic analysis of European vegetation. New Phytol 166:465–484 (doi: 10.1111/j.1469-8137.2005.01316.x)

    Google Scholar 

  • Uhl D, Mosbrugger V, Bruch A, Utescher T (2003) Reconstructing palaeotemperatures using leaf floras—case studies for a comparison of leaf margin analysis and the coexistence approach. Rev Palaeobot Palynol 126:49–64 (doi:10.1016/S0034-6667(03)00058-7)

    Google Scholar 

  • Utescher T, Mosbrugger V, Ashraf AR (2000) Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15:430–449

    Google Scholar 

  • Wilf P (1997) When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology 23:373–390

    Google Scholar 

  • Wing SL, Greenwood DR (1993) Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philos T Roy Soc B 341:243–252

    Google Scholar 

  • Wolfe JA (1979) Temperature parameters of humid zo mesic forests of Eastern Asia and relation to forests of other regions of the Northern hemisphere and Australia. US Geol Surv Prof Paper 1106:1–37

    Google Scholar 

  • Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:1–71

    Google Scholar 

  • Wolfe JA (1994a) Tertiary climatic changes at middle latitudes of western North America. Palaeogeogr Palaeoclimatol Palaeoecol 108:195–205

    Article  Google Scholar 

  • Wolfe JA (1994b) An analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimatol Palaeoecol 108:207–216

    Article  Google Scholar 

  • Wolfe JA (1995) Paleoclimatic estimates from Tertiary leaf assemblages. Annu Rev Earth Planet Sci 23:119–142

    Article  Google Scholar 

  • Wolfe JA (1999) Early Palaeocene palaeoclimatic inferences from fossil floras of the western interior, USA—comment. Palaeogeogr Palaeoclimatol Palaeoecol 150:343–345

    Article  Google Scholar 

  • Wolfe JA, Spicer RA (1999) Fossil leaf character states: multivariate analysis. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 233–239

    Google Scholar 

  • Zhao LC, Wang YF, Liu CL, Li CS (2004). Climatic implications of fruit and seed assemblage from Miocene of Yunnan, Southwestern China. Quatern Int 117:81–89

    Google Scholar 

Download references

Acknowledgments

We thank M. Montenari, T. Schneck (Tübingen), J. Lechterbeck (Köln) and E. Walcher-Andriss (Ammerbuch-Entringen) for their support during field-work at the Schrotzburg locality; S. Giersch (Karlsruhe) and M. Böhme (Munich) for fruitful discussions on the applicability of the fossil crocodilians recovered at the Bohlinger Schlucht as palaeoclimate indicators; R. Siedner (Tübingen) for preparing the palynomorphs; as well as D.K. Ferguson and W.-C. Dullo for their valuable comments on the manuscript. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG grant UH 122/1-1 to DU), and by the Alexander von Humboldt Foundation in the form of Feodor Lynen Research Fellowships awarded to D.U. and S.K. This is a contribution to Neogene Climate Evolution in Eurasia (NECLIME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Uhl.

Additional information

Dedicated to Prof. Dr. Harald Walther, Dresden, on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhl, D., Bruch, A.A., Traiser, C. et al. Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S Germany): a multi-method approach. Int J Earth Sci (Geol Rundsch) 95, 1071–1085 (2006). https://doi.org/10.1007/s00531-006-0083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0083-9

Keywords

Navigation