Skip to main content
Log in

Performance evaluation of TcpHas: TCP for HTTP adaptive streaming

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

HTTP adaptive streaming (HAS) is a widely used video streaming technology that suffers from a degradation of user’s Quality of Experience (QoE) and network’s Quality of Service (QoS) when many HAS players are sharing the same bottleneck link and competing for bandwidth. The two major factors of this degradation are: the large OFF period of HAS, which causes false bandwidth estimations, and the TCP congestion control, which is not suitable for HAS given that it does not consider the different video encoding bitrates of HAS. This paper proposes a HAS-based TCP congestion control, TcpHas, that minimizes the impact of the two aforementioned issues. It does this using traffic shaping on the server. Simulations indicate that TcpHas improves both QoE, mainly by reducing instability and convergence speed, and QoS, mainly by reducing queuing delay and packet drop rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdallah, A., Meddour, D.E., Ahmed, T., Boutaba, R.: Cross layer optimization architecture for video streaming in WiMAX networks. In: 2010 IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 8–13 (2010)

  2. Akhshabi, S., Anantakrishnan, L., Begen, A.C., Dovrolis, C.: What happens when HTTP adaptive streaming players compete for bandwidth? In: Proceedings of the 22nd international workshop on Network and Operating System Support for Digital Audio and Video. ACM, pp. 9–14 (2012)

  3. Akhshabi, S., Anantakrishnan, L., Dovrolis, C., Begen, A.C.: Server-based traffic shaping for stabilizing oscillating adaptive streaming players. In: 23rd ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM, pp. 19–24 (2013)

  4. Allman, M., Paxson,V., Blanton, E. TCP congestion control. RFC 5681 (2009)

  5. Ammar, D.: PPBP in ns-3. https://codereview.appspot.com/4997043 (2016)

  6. Ammar, D., Begin, T., Guerin-Lassous, I.: A new tool for generating realistic internet traffic in ns-3. In: 4th International ICST Conference on Simulation Tools and Techniques, pp. 81–83 (2011)

  7. Ben Ameur, C., Mory, E., Cousin, B.: Shaping HTTP adaptive streams using receive window tuning method in home gateway. In: IEEE International Conference on Performance Computing and Communications (IPCCC), pp. 1–2 (2014)

  8. Ben Ameur, C., Mory, E., Cousin, B.: Evaluation of gateway-based shaping methods for HTTP adaptive streaming. In: Quality of Experience-based Management for Future Internet Applications and Services (QoE-FI) Workshop. IEEE International Conference on Communications (ICC), London, pp. 1–6 (2015)

  9. Ben Ameur, C., Mory, E., Cousin, B.: Combining traffic shaping methods with congestion control variants for HTTP adaptive streaming. Multimed. Syst., 1–18 (2016)

    Article  Google Scholar 

  10. Ben Ameur, C., Mory, E., Cousin, B., Dedu, E.: TcpHas: TCP for HTTP adaptive streaming. IEEE International Conference on Communications (ICC). IEEE, Paris, pp. 1–7 (2017)

  11. Capone, A., Martignon, F., Palazzo, S.: Bandwidth estimates in the TCP congestion control scheme. In: Thyrrhenian International Workshop on Digital Communications: Evolutionary Trends of the Internet (IWDC). Springer, New York, pp. 614–626 (2001)

    MATH  Google Scholar 

  12. Capone, A., Fratta, L., Martignon, F.: Bandwidth estimation schemes for TCP over wireless networks. IEEE Trans. Mobile Comput. 3(2), 129–143 (2004)

    Article  Google Scholar 

  13. Cheng, Y.: HTTP traffic generator. https://codereview.appspot.com/4940041 (2016)

  14. Cheng, Y., Çetinkaya, E.K., Sterbenz, J.P.: Transactional traffic generator implementation in ns-3. In: 6th International ICST Conference on Simulation Tools and Techniques, pp. 182–189 (2013)

  15. Cisco (2013) Broadband network gateway overview. http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r4-3/bng/configuration/guide/b_bng_cg43xasr9k/b_bng_cg43asr9k_chapter_01.html

  16. Dedu, E., Ramadan, W., Bourgeois, J.: A taxonomy of the parameters used by decision methods for adaptive video transmission. Multimed. Tools Appl. 74(9), 2963–2989 (2015)

    Article  Google Scholar 

  17. Floyd, S., Handley, M., Padhye, J., Widmer, J.: TCP Friendly Rate Control (TFRC): Protocol specification. RFC 5348 (2008)

  18. Ghobadi, M., Cheng, Y., Jain, A., Mathis, M.: Trickle: Rate limiting youtube video streaming. Usenix Annual Technical Conference. Boston, pp. 191–196 (2012)

  19. Hoquea, M.A., Siekkinena, M., Nurminena, J.K., Aaltob, M., Tarkoma, S.: Mobile multimedia streaming techniques: QoE and energy saving perspective. Pervasive Mobile Comput. 16(Part A), 96–114 (2015)

    Article  Google Scholar 

  20. Hoßfeld, T., Egger, S., Schatz, R., Fiedler, M., Masuch, K., Lorentzen, C.: Initial delay vs. interruptions: Between the devil and the deep blue sea. In: 4th International Workshop on Quality of Multimedia Experience (QoMEX). IEEE, Melbourne, pp. 1–6 (2012)

  21. Houdaille, R., Gouache, S.: Shaping HTTP adaptive streams for a better user experience. 3rd Multimedia Systems Conference. ACM, Chapel Hill, pp. 1–9 (2012)

  22. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with festive. In: 8th international conference on Emerging networking experiments and technologies. ACM, pp. 97–108 (2012)

  23. Krogfoss, B., Agrawal, A., Sofman, L.: Analytical method for objective scoring of HTTP adaptive streaming (HAS). In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, pp. 1–6 (2012)

  24. Li, S.Q., Chong, S., Hwang, C.L.: Link capacity allocation and network control by filtered input rate in high-speed networks. IEEE/ACM Trans. Netw. (TON) 3(1), 10–25 (1995)

    Article  Google Scholar 

  25. Mansy, A., Ver Steeg, B., Ammar, M.: Sabre: A client based technique for mitigating the buffer bloat effect of adaptive video flows. In: 4th ACM Multimedia Systems Conference. ACM, pp. 214–225 (2013)

  26. Mascolo, S., Grieco, L.A.: Additive increase early adaptive decrease mechanism for TCP congestion control. In: 10th International Conference on Telecommunications (ICT). IEEE, vol. 1, pp. 818–825 (2003)

  27. Mascolo, S., Racanelli, G.: Testing TCP Westwood+ over transatlantic links at 10 gigabit/second rate. Protocols for Fast Long-distance Networks (PFLDnet) Workshop. Lyon, pp. 1–6 (2005)

  28. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M.Y., Wang, R.: TCP Westwood: Bandwidth estimation for enhanced transport over wireless links. In: 7th annual international conference on Mobile computing and networking. ACM, pp. 287–297 (2001)

  29. Mascolo, S., Grieco, L.A., Ferorelli, R., Camarda, P., Piscitelli, G.: Performance evaluation of Westwood+ TCP congestion control. Perform. Eval. 55(1), 93–111 (2004)

    Article  Google Scholar 

  30. Mogul, J.C.: Observing TCP dynamics in real networks. ACM SIGCOMM Comput. Commun. Rev. 22(4) (1992)

    Article  Google Scholar 

  31. Ramadan, W., Dedu, E., Bourgeois, J.: Avoiding quality oscillations during adaptive streaming of video. Int. J. Digital Inf. Wireless Commun. (IJDIWC) 1(1), 126–145 (2011)

  32. Sandvine: Global internet phenomena report. https://www.sandvine.com (2016)

  33. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T., Tran-Gia, P.: A survey on quality of experience of HTTP adaptive streaming. Commun. Surv. Tutor. IEEE 17(1), 469–492 (2014)

    Article  Google Scholar 

  34. Shuai, Y., Petrovic, G., Herfet, T.: Olac: An open-loop controller for low-latency adaptive video streaming. IEEE International Conference on Communications (ICC). IEEE, London, pp. 6874–6879 (2015)

  35. Villa, B.J., Heegaard, P.E.: Group based traffic shaping for adaptive HTTP video streaming by segment duration control. In: 27th IEEE International Conference on Advanced Information Networking and Applications (AINA). IEEE, pp. 830–837 (2013)

  36. Yang, H., Chen, X., Yang, Z., Zhu, X., Chen, Y.: Opportunities and challenges of HTTP adaptive streaming. Int. J. Future Gener. Commun. Netw. 7(6), 165–180 (2014)

    Article  Google Scholar 

  37. Yin, X., Sekar, V., Sinopoli, B.: Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP. 13th ACM Workshop on Hot Topics in Networks. ACM, Los Angeles, pp. 1–9 (2014)

  38. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic approach for dynamic adaptive video streaming over HTTP. ACM SIGCOMM Comput. Commun. Rev. 45(4), 325–338 (2015)

    Article  Google Scholar 

  39. Zhang, L., Shenker, S., Clark, D.D.: Observations on the dynamics of a congestion control algorithm: The effects of two-way traffic. ACM SIGCOMM Comput. Commun. Rev. 21(4), 133–147 (1991)

    Article  Google Scholar 

  40. Zukerman, M., Neame, T.D., Addie, R.G.: Internet traffic modeling and future technology implications. In: 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM), vol. 1. IEEE, pp. 587–596 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Mory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ameur, C., Mory, E., Cousin, B. et al. Performance evaluation of TcpHas: TCP for HTTP adaptive streaming. Multimedia Systems 24, 491–508 (2018). https://doi.org/10.1007/s00530-018-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-018-0587-8

Keywords

Navigation