Skip to main content
Log in

Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the boundedness and Hölder continuity of local weak solutions to the following nonhomogeneous equation

$$\begin{aligned} \partial _tu(x,t)+\mathrm{P.V.}\int _{{\mathbb {R}}^N}K(x,y,t)|u(x,t)-u(y,t)|^{p-2}\big (u(x,t)-u(y,t)\big )dy= f(x,t,u) \end{aligned}$$

in \(Q_T=\Omega \times (0,T)\), where the symmetric kernel K(xyt) has a generalized form of the fractional p-Laplace operator of s-order. We impose some structural conditions on the function f and use the De Giorgi-Nash-Moser iteration to establish the boundedness of local weak solutions in the a priori way. Based on the boundedness result, we also obtain Hölder continuity of bounded solutions in the superquadratic case. These results can be regarded as a counterpart to the elliptic case due to Di Castro et al. (Ann Inst H Poincaré Anal Non Linéaire, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartumeus, F., Da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86, 3078–3087 (2005)

    Article  Google Scholar 

  2. Bass, R.F., Kassmann, M.: Hölder continuity of harmonic functions with respect to operators of variable order. Commun. Partial Differ. Equ. 30(30), 1249–1259 (2005)

    Article  MATH  Google Scholar 

  3. Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case. Adv. Math. 338(7), 782–846 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Brasco, L., Lindgren, E., Strömqvist, M.: Continuity of solutions to a nonlinear fractional diffusion equation. arXiv:1907.00910

  6. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Chan, C.H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall, London (2004)

    MATH  Google Scholar 

  11. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Equ. 267(1), 547–586 (2019)

    Article  MATH  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. DiBenedetto, E.: Degenerate parabolic equations. In: Universitext. Springer, New York (1993)

  17. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ho, K., Sim, I.: Corrigendum tence and some properties of solutions for degenerate elliptic equations with exponent variable. [Nonlinear Anal. 98, 146–164 (2014)], Nonlinear Anal. 128, 423–426 (2015)

  19. Humphries, N.E., et al.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  Google Scholar 

  20. Harris, T.H., et al.: Generalized Lévy walks and the role of chemokines in migration of effector CD8\(^+\) T cells. Nature 486, 545–548 (2012)

    Google Scholar 

  21. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kassmann, M.: The theory of De Giorgi for non-local operators. C. R. Math. Acad. Sci. Paris 345(11), 621–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kassmann, M.: The classical Harnack inequality fails for nonlocal operators, preprint No. 360, Sonderforschungsbereich 611 (2007)

  24. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kassmann, M.: Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited. http://www.math.uni-bielefeld.de/sfb701/preprints/view/523

  26. Kassmann, M., Schwab, R.W.: Regularity results for nonlocal parabolic equations. Riv. Mat. Univ. Parma (N.S.) 5(1), 183–212 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Kim, Y.C.: Nonlocal Harnack inequalities for nonlocal heat equations. J. Differ. Equ. 267, 6691–6757 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  31. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E (3) 66(5), 7 (2002)

    Article  MathSciNet  Google Scholar 

  32. Lindgren, E.: Hölder estimates for viscosity solutions of equations of fractional \(p\)-Laplace type. Nonlinear Differ. Equ. Appl. (NoDEA) 23(5), 55 (2016)

    MATH  Google Scholar 

  33. Machihara, S., Ozawa, T.: Interpolation inequalities in Besov spaces. Proc. Am. Math. Soc. 131(5), 1553–1556 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Amer. Math. Soc., Providence (1997)

    Book  MATH  Google Scholar 

  35. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. 105(6), 810–844 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Mingione, G.: Bounds for the singular set of solutions to non linear elliptic systems. Calc. Var. Partial Differ. Equ. 18(3), 373–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reynolds, A.M., Rhodes, C.J.: The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90, 877–887 (2009)

    Article  Google Scholar 

  38. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Strömqvist, M.: Harnack’s inequality for parabolic nonlocal equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 1709–1745 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Strömqvist, M.: Local boundedness of solutions to non-local parabolic equations modeled on the fractional \(p\)-Laplacian. J. Differ. Equ. 266(12), 7948–7979 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Vázquez, J.L.: The Dirichlet problem for the fractional \(p\)-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Vázquez, J.L.: The evolution fractional \(p\)-Laplacian equation in \({\mathbb{R}}^N\). Fundamental solution and asymptotic behaviour. Nonlinear Anal. 199, 112034 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Vázquez, J.L.: The fractional \(p\)-Laplacian evolution equation in \({\mathbb{R}}^N\) in the sublinear case. arXiv:2011.01521

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous reviewer for providing us several important reference papers and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (12071098, 11671111, 12071009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Zhang, C. & Zhou, S. Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations. Calc. Var. 60, 38 (2021). https://doi.org/10.1007/s00526-020-01870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01870-x

Mathematics Subject Classification

Navigation