Skip to main content
Log in

Gradient blow-up rates and sharp gradient estimates for diffusive Hamilton–Jacobi equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consider the diffusive Hamilton–Jacobi equation

$$\begin{aligned} u_t-\Delta u=|\nabla u|^p+h(x)\ \ \text { in } \Omega \times (0,T) \end{aligned}$$

with Dirichlet conditions, which arises in stochastic control problems as well as in KPZ type models. We study the question of the gradient blowup rate for classical solutions with \(p>2\). We first consider the case of time-increasing solutions. For such solutions, the precise rate was obtained by Guo and Hu (2008) in one space dimension, but the higher dimensional case has remained an open question (except for radially symmetric solutions in a ball). Here, we partially answer this question by establishing the optimal estimate

$$\begin{aligned} C_1(T-t)^{-1/(p-2)}\le \Vert \nabla u(t)\Vert _\infty \le C_2(T-t)^{-1/(p-2)} \end{aligned}$$
(1)

for time-increasing gradient blowup solutions in any convex, smooth bounded domain \(\Omega \) with \(2<p<3\). We also cover the case of (nonradial) solutions in a ball for \(p=3\). Moreover we obtain the almost sharp rate in general (nonconvex) domains for \(2<p\le 3\). The proofs rely on suitable auxiliary functionals, combined with the following, new Bernstein-type gradient estimate with sharp constant:

$$\begin{aligned} |\nabla u|\le d_\Omega ^{-1/(p-1)}\bigl (d_p+C d_\Omega ^\alpha \bigr ) \ \ \text { in } \Omega \times (0,T),\qquad d_p=(p-1)^{-1/(p-1)}, \end{aligned}$$
(2)

where \(d_\Omega \) is the function distance to the boundary. This close connection between the temporal and spatial estimates (1) and (2) seems to be a completely new observation. Next, for any \(p>2\), we show that more singular rates may occur for solutions which are not time-increasing. Namely, for a suitable class of solutions in one space-dimension, we prove the lower estimate \(\Vert u_x(t)\Vert _\infty \ge C(T-t)^{-2/(p-2)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Assumptions (1.15)–(1.16) are motivated by intersection-comparison or zero-number arguments crucially used in the proof.

  2. This is where the restriction \(p\le 3\) in our results crucially enters. Roughly speaking, our method of proof of the correct GBU rate \(1/(p-2)\) amounts to showing that, up to perturbation terms, the function \(d_\Omega ^{2-p}u^{p-1}\) is a subsolution of the linearized equation, and this does not seem to be the case when \(p>3\).

  3. We point out a misprint in the proof of this lower bound in [37]: the inequality at line 2 from the bottom of p. 81 should be replaced with \(|m'(\sigma )|\le \Vert \nabla w(\sigma )\Vert _\infty \le 2A_1(\sigma -s(t))^{-1/2}\) for all \(t\in {\tilde{I}}\) and a.e. \(\sigma \in (s(t),t)\).

References

  1. Alaa, N.: Weak solutions of quasilinear parabolic equations with measures as initial data. Ann. Math. Blaise Pascal 3, 1–15 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alikakos, N.D., Bates, P.W., Grant, C.P.: Blow up for a diffusion–advection equation. Proc. Roy. Soc. Edinburgh Sect. A 113, 181–190 (1989)

    Article  MathSciNet  Google Scholar 

  3. Angenent, S., Fila, M.: Interior gradient blow-up in a semilinear parabolic equation. Diff. Integr. Equ. 9, 865–877 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Arrieta, J.M., Rodriguez-Bernál, A., Souplet, Ph.: Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Ann. Sc. Norm. Super. Pisa. Cl. Sci. 5(3), 1–15 (2004)

  5. Asai, K., Ishimura, N.: On the interior derivative blow-up for the curvature evolution of capillary surfaces. Proc. Am. Math. Soc. 126, 835–840 (1998)

    Article  MathSciNet  Google Scholar 

  6. Attouchi, A.: Well-posedness and gradient blow-up estimate near the boundary for a Hamilton–Jacobi equation with degenerate diffusion. J. Differ. Equ. 253, 2474–2492 (2012)

    Article  MathSciNet  Google Scholar 

  7. Attouchi, A.: Boundedness of global solutions of a \(p\)-Laplacian evolution equation with a nonlinear gradient term. Asymptot. Anal. 91, 233–251 (2015)

    Article  MathSciNet  Google Scholar 

  8. Attouchi, A., Barles, G.: Global continuation beyond singularities on the boundary for a degenerate diffusive Hamilton–Jacobi equation. J. Math. Pures Appl. 104, 383–402 (2015)

    Article  MathSciNet  Google Scholar 

  9. Attouchi, A., Souplet, Ph.: Single point gradient blow-up on the boundary for a Hamilton–Jacobi equation with \(p\)-Laplacian diffusion. Trans. Am. Math. Soc. 369, 935–974 (2017)

  10. Barles, G., Burdeau, J.: The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Comm. Partial Differ. Equ. 20, 129–178 (1995)

    Article  MathSciNet  Google Scholar 

  11. Barles, G., Da Lio, F.: On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations. J. Math. Pures Appl. 83, 53–75 (2004)

    Article  MathSciNet  Google Scholar 

  12. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. dedicated to the memory of Tosio Kato. J. Evol. Equ. 1, 387–404 (2001)

    Article  MathSciNet  Google Scholar 

  13. Cirant, M., Goffi, A.: Lipschitz regularity for viscous Hamilton-Jacobi equations with \(L^p\) terms. Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 757–784 (2020)

    Article  MathSciNet  Google Scholar 

  14. Conner, G., Grant, C.: Asymptotics of blowup for a convection-diffusion equation with conservation. Differ. Integr. Equ. 9, 719–728 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Dlotko, T.: Examples of parabolic problems with blowing-up derivatives. J. Math. Anal. Appl. 154, 226–237 (1991)

    Article  MathSciNet  Google Scholar 

  16. Esteve, C.: Single-point gradient blow-up on the boundary for diffusive Hamilton–Jacobi equation in domains with non-constant curvature. J. Math. Pures Appl. 137, 143–177 (2020)

    Article  MathSciNet  Google Scholar 

  17. Fila, M., Lankeit, J.: Continuation beyond interior gradient blow-up in a semilinear parabolic equation. Math. Ann. 377, 317–333 (2020)

    Article  MathSciNet  Google Scholar 

  18. Fila, M., Lieberman, G.M.: Derivative blow-up and beyond for quasilinear parabolic equations. Differ. Integr. Equ. 7, 811–821 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Fila, M., Matano, H., Polácik, P.: Immediate regularization after blow-up. SIAM J. Math. Anal. 37, 752–776 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fila, M., Taskinen, J., Winkler, M.: Convergence to a singular steady-state of a parabolic equation with gradient blow-up. Appl. Math. Lett. 20, 578–582 (2007)

    Article  MathSciNet  Google Scholar 

  21. Filippucci, R., Pucci, P., Souplet, Ph.: A Liouville-type theorem in half space and its application to the gradient blow up behavior for superquadratic diffusive Hamilton–Jacobi equations. Commun. Partial Differ. Equ. 45, 321–349 (2020)

  22. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  23. Friedman, A., McLeod, B.: Blowup of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–477 (1985)

    Article  MathSciNet  Google Scholar 

  24. Galaktionov, V.A., Vázquez, J.L.: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50, 1–67 (1997)

    Article  Google Scholar 

  25. Giga, Y.: Interior derivative blow-up for quasilinear parabolic equations. Discrete Cont. Dyn. Syst. 1, 449–461 (1995)

    Article  MathSciNet  Google Scholar 

  26. Guo, J.-S., Hu, B.: Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete Contin. Dyn. Syst. 20, 927–937 (2008)

    Article  MathSciNet  Google Scholar 

  27. Hesaaraki, M., Moameni, A.: Blow-up positive solutions for a family of nonlinear parabolic equations in general domain in \({\mathbb{R}}^N\). Michigan Math. J. 52, 375–389 (2004)

    Article  MathSciNet  Google Scholar 

  28. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  Google Scholar 

  29. Krug, J., Spohn, H.: Universality classes for deterministic surface growth. Phys. Rev. A. 38, 4271–4283 (1988)

    Article  MathSciNet  Google Scholar 

  30. Kutev, N., Global solvability and boundary gradient blow up for one-dimensional parabolic equations, Progress in partial differential equations: elliptic and parabolic problems (Pont-à-Mousson, : Pitman Res. Notes Math. Ser. 266. Longman, Harlow 1992, 176–181 (1991)

  31. Lasry, J.-M., Lions, P.-L.: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. the model problem. Math. Ann. 283, 583–630 (1989)

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Yao, R., Tong, X., Zhang, Z.: Gradient blowup rate for a heat equation with general gradient nonlinearity. Appl. Anal. 95, 1635–1644 (2016)

    Article  MathSciNet  Google Scholar 

  33. Li, Y.-X., Souplet, Ph.: Single-point gradient blow-up on the boundary for diffusive Hamilton–Jacobi equations in planar domains. Commun. Math. Phys. 293, 499–517 (2009)

  34. Matano, H., Merle, F.: Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256, 992–1064 (2009)

    Article  MathSciNet  Google Scholar 

  35. Porretta, A., Souplet, Ph.: The profile of boundary gradient blowup for the diffusive Hamilton–Jacobi equation. Int. Math. Res. Not. IMRN 17, 5260–5301 (2017)

  36. Porretta, A., Souplet, Ph.: Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1913–1923 (2017)

  37. Porretta, A., Souplet, Ph.: Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton–Jacobi equation. J. Math. Pures Appl. 133, 66–117 (2020)

  38. Porretta, A., Zuazua, E.: Null controllability of viscous Hamilton–Jacobi equations. Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 29, 301–333 (2012)

    Article  MathSciNet  Google Scholar 

  39. Quaas, A., Rodríguez, A.: Loss of boundary conditions for fully nonlinear parabolic equations with superquadratic gradient terms. J. Differ. Equ. 264, 2897–2935 (2018)

    Article  MathSciNet  Google Scholar 

  40. Quittner, P.: Souplet, Ph.: Superlinear Parabolic Problems. Blow-up Global Existence and Steady States. Birkhäuser Verlag, Basel (2007)

  41. Souplet, Ph.: Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions. Differ. Integr. Equ. 15, 237–256 (2002)

  42. Souplet, Ph., Vázquez, J.-L.: Stabilization towards a singular steady state with gradient blow-up for a convection–diffusion problem. Discrete Contin. Dyn. Syst. 14, 221–234 (2006)

  43. Souplet, Ph., Zhang, Q.S.: Global solutions of inhomogeneous Hamilton–Jacobi equations. J. Anal. Math. 99, 355–396 (2006)

  44. Sperb, R.: Growth estimates in diffusion–reaction problems. Arch. Rational Mech. Anal. 75, 127–145 (1980)

    Article  MathSciNet  Google Scholar 

  45. Zhang, Z., Hu, B.: Rate estimates of gradient blowup for a heat equation with exponential nonlinearity. Nonlinear Anal. 72, 4594–4601 (2010)

    Article  MathSciNet  Google Scholar 

  46. Zhang, Z., Li, Z.: A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations. Acta Math. Sci. Ser. B (Engl. Ed.) 33, 678–686 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Attouchi is supported by the Academy of Finland, Project No. 307870. Ph. Souplet is partially supported by the Labex MME-DII (ANR11-LBX-0023-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Souplet.

Additional information

Communicated by O.Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attouchi, A., Souplet, P. Gradient blow-up rates and sharp gradient estimates for diffusive Hamilton–Jacobi equations. Calc. Var. 59, 153 (2020). https://doi.org/10.1007/s00526-020-01810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01810-9

Mathematics Subject Classification

Navigation