Skip to main content
Log in

Abstract

We develop a multivalued theory for the stability operator of (a constant multiple of) a minimally immersed submanifold \(\Sigma \) of a Riemannian manifold \(\mathcal {M}\). We define the multiple valued counterpart of the classical Jacobi fields as the minimizers of the second variation functional defined on a Sobolev space of multiple valued sections of the normal bundle of \(\Sigma \) in \(\mathcal {M}\), and we study existence and regularity of such minimizers. Finally, we prove that any Q-valued Jacobi field can be written as the superposition of Q classical Jacobi fields everywhere except for a relatively closed singular set having codimension at least two in the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Observe that \(F \circ u\) is a well defined function \(\Omega \rightarrow \mathbb {R}^{q}\), because F is, by hypothesis, a well defined map on the quotient \(\mathcal {A}_{Q}(\mathbb {R}^d) = (\mathbb {R}^d)^{Q}/\mathcal {P}_{Q}\).

  2. That is, \(\vec {\xi }(x)\) is a continuous unit m-vector field on \(\Sigma \) with \((\xi _i)_{i=1}^{m}\) an orthonormal frame of the tangent bundle \(\mathcal {T}\Sigma \).

  3. Observe that this convention is coherent with the use of \(\llbracket p \rrbracket \), \(p \in \mathbb {R}^d\), to denote the Dirac delta \(\delta _{p}\), considered as a 0-dimensional current in \(\mathbb {R}^d\).

  4. Here, the Sobolev space \(W^{1,p}(\Omega )\) is classically defined as the completion of \(C^{1}(\Omega )\) with respect to the \(W^{1,p}\)-norm

    $$\begin{aligned} \Vert f \Vert _{W^{1,p}(\Omega )}^{p} := \int _{\Omega } \left( |f(x)|^{p} + |Df(x)|^{p} \right) \, \mathrm{d}\mathcal {H}^{m}(x) \end{aligned}$$

    for \(1 \le p < \infty \) and

    $$\begin{aligned} \Vert f \Vert _{W^{1,\infty }(\Omega )} := \mathop {{{\,\mathrm{ess\,sup}\,}}}\limits _{\Omega } \left( |f(x)| + |Df(x)| \right) . \end{aligned}$$
  5. Observe that if \(N|_{\partial \Omega } = Q \llbracket 0 \rrbracket \), then the null Q-field \(N_{0} \equiv Q \llbracket 0 \rrbracket \) is a competitor, whence \(\mathrm {Jac}(N,\Omega ) \le \mathrm {Jac}(N_{0},\Omega ) = 0\) if N is a minimizer.

  6. Recall that the existence of such a map f is guaranteed by Theorem 1.25.

  7. Observe that the inequality

    $$\begin{aligned} \mathrm {Dir}(\mathscr {N}_{p}, B_{\rho }) \le D_{\rho } \end{aligned}$$

    is guaranteed for every \(\rho \) because the Dirichlet functional is lower semi-continuous with respect to weak convergence in \(W^{1,2}\).

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. (2) 95, 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Allard, W.K., Almgren Jr., F.J.: On the radial behavior of minimal surfaces and the uniqueness of their tangent cones. Ann. Math. (2) 113, 215–265 (1981). https://doi.org/10.2307/2006984

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren, Jr., F.J.: Almgren’s Big Regularity Paper: \(Q\)-valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-Minimizing Rectifiable Currents Up to Codimension 2. World Scientific Monograph Series in Mathematics, vol. 1. World Scientific Publishing Co., Inc., River Edge, NJ (2000) (with a preface by Jean E. Taylor and Vladimir Scheffer)

  4. Ambrosio, L.: Metric space valued functions of bounded variation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17, 439–478 (1990). http://www.numdam.org/item?id=ASNSP_1990_4_17_3_439_0

  5. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969). https://doi.org/10.1007/BF01404309

    Article  MathSciNet  MATH  Google Scholar 

  6. do Carmo, M.P.: Riemannian Geometry, Mathematics: Theory & Applications (Translated from the second Portuguese edition by Francis Flaherty). Birkhäuser Boston, Inc., Boston, MA (1992). https://doi.org/10.1007/978-1-4757-2201-7

    Book  Google Scholar 

  7. De Lellis, C.: Errata to “Q-valued functions revisited”. http://www.math.uzh.ch/fileadmin/user/delellis/publikation/Errata_memo.pdf (2013). Accessed Oct 2016

  8. De Lellis, C.: The regularity of minimal surfaces in higher codimension. In: Jerison, D., Kisin, M., Seidel, P., Stanley, R., Yau, H.-T., Yau, S.-T. (eds.) Current Developments in Mathematics 2014, pp. 153–229. International Press, Somerville, MA (2016)

    Google Scholar 

  9. De Lellis, C.: The size of the singular set of area-minimizing currents. In: Cao, H.-D., Yau, S.-T. (eds.) Surveys in Differential Geometry 2016. Advances in Geometry and Mathematical Physics. Surveys in Differential Geometry, vol. 21, pp. 1–83. International Press, Somerville, MA (2016)

    Google Scholar 

  10. De Lellis, C., Focardi, M., Spadaro, E.N.: Lower semicontinuous functionals for Almgren’s multiple valued functions. Ann. Acad. Sci. Fenn. Math. 36, 393–410 (2011). https://doi.org/10.5186/aasfm.2011.3626

    Article  MathSciNet  MATH  Google Scholar 

  11. De Lellis, C., Hirsch, J., Marchese, A., Stuvard, S.: Regularity of area minimizing currents modulo \(p\) (forthcoming) (2019)

  12. De Lellis, C., Marchese, A., Spadaro, E., Valtorta, D.: Rectifiability and upper Minkowski bounds for singularities of harmonic \(Q\)-valued maps. Comment. Math. Helv. 93, 737–779 (2018). https://doi.org/10.4171/CMH/449

    Article  MathSciNet  MATH  Google Scholar 

  13. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient \(L^p\) estimates. Geom. Funct. Anal. 24, 1831–1884 (2014). https://doi.org/10.1007/s00039-014-0306-3

    Article  MathSciNet  MATH  Google Scholar 

  14. De Lellis, C., Spadaro, E.: Multiple valued functions and integral currents. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIV, 1239–1269 (2015)

    MathSciNet  MATH  Google Scholar 

  15. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents II: center manifold. Ann. Math. (2) 183, 499–575 (2016). https://doi.org/10.4007/annals.2016.183.2.2

    Article  MathSciNet  MATH  Google Scholar 

  16. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents III: blow-up. Ann. Math. (2) 183, 577–617 (2016). https://doi.org/10.4007/annals.2016.183.2.3

    Article  MathSciNet  MATH  Google Scholar 

  17. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for 2-dimensional almost minimal currents II: branched center manifold. Ann. PDE 3(2), Art. 18 (2017). https://doi.org/10.1007/s40818-017-0035-7

  18. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for \(2\)-dimensional almost minimal currents I: Lipschitz approximation. Trans. Am. Math. Soc. 370, 1783–1801 (2018). https://doi.org/10.1090/tran/6995

    Article  MathSciNet  MATH  Google Scholar 

  19. De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for 2-dimensional almost minimal currents III: blowup. arXiv:1508.05510 (to appear on J. Differ. Geom) (2019)

  20. De Lellis, C., Spadaro, E.N.: \(Q\)-valued functions revisited. Mem. Am. Math. Soc. 211, vi+79 (2011). https://doi.org/10.1090/S0065-9266-10-00607-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Federer, H.: Some theorems on integral currents. Trans. Am. Math. Soc. 117, 43–67 (1965)

    Article  MathSciNet  Google Scholar 

  22. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  23. Giaquinta, M., Modica, G., Souček, J.R.: Cartesian Currents in the Calculus of Variations. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37. Springer, Berlin (1998). https://doi.org/10.1007/978-3-662-06218-0

    Book  Google Scholar 

  24. Hang, F.: On the weak limits of smooth maps for the Dirichlet energy between manifolds. Commun. Anal. Geom. 13, 929–938 (2005). https://doi.org/10.4310/CAG.2005.v13.n5.a4

    Article  MathSciNet  Google Scholar 

  25. Hirsch, J.: Boundary regularity of Dirichlet minimizing \(Q\)-valued functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16, 1353–1407 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Hirsch, J.: Partial Hölder continuity for \(Q\)-valued energy minimizing maps. Commun. Partial Differ. Equ. 41, 1347–1378 (2016). https://doi.org/10.1080/03605302.2016.1204313

    Article  MATH  Google Scholar 

  27. Hirsch, J., Stuvard, S., Valtorta, D.: Rectifiability of the singular set of multiple-valued energy minimizing harmonic maps. Trans. Am. Math. Soc. 371, 4303–4352 (2019). https://doi.org/10.1090/tran/7595

    Article  MathSciNet  MATH  Google Scholar 

  28. Krantz, S.G., Parks, H.R.: Geometric Integration Theory, Cornerstones. Birkhäuser Boston Inc., Boston (2008). https://doi.org/10.1007/978-0-8176-4679-0

    Book  MATH  Google Scholar 

  29. Krummel, B., Wickramasekera, N.: Fine properties of branch point singularities: two-valued harmonic functions. arXiv:1311.0923 (2013)

  30. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997). https://doi.org/10.1007/b98852

    Book  MATH  Google Scholar 

  31. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37, 349–367 (1988). https://doi.org/10.1512/iumj.1988.37.37017

    Article  MathSciNet  MATH  Google Scholar 

  32. Morgan, F.: On the singular structure of two-dimensional area minimizing surfaces in \({ R}^{n}\). Math. Ann. 261, 101–110 (1982). https://doi.org/10.1007/BF01456413

    Article  MathSciNet  MATH  Google Scholar 

  33. Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005). https://doi.org/10.1142/9789812701312

    Book  MATH  Google Scholar 

  34. Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. Sib. Mat. Zhurnal 38, 567–583 (1997). https://doi.org/10.1007/BF02683844

    Article  MathSciNet  Google Scholar 

  35. Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. II. Sib. Mat. Zhurnal 45, 855–870 (2004). https://doi.org/10.1023/B:SIMJ.0000035834.03736.b6

    Article  MathSciNet  MATH  Google Scholar 

  36. Reshetnyak, Y.G.: On the theory of Sobolev classes of functions with values in a metric space. Sib. Mat. Zhurnal 47, 146–168 (2006). https://doi.org/10.1007/s11202-006-0013-x

    Article  MathSciNet  MATH  Google Scholar 

  37. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118, 525–571 (1983). https://doi.org/10.2307/2006981

    Article  MathSciNet  MATH  Google Scholar 

  38. Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  39. Simon, L.: Uniqueness of some cylindrical tangent cones. Commun. Anal. Geom. 2, 1–33 (1994). https://doi.org/10.4310/CAG.1994.v2.n1.a1

    Article  MathSciNet  MATH  Google Scholar 

  40. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1996). https://doi.org/10.1007/978-3-0348-9193-6. (based on lecture notes by Norbert Hungerbühler)

    Book  MATH  Google Scholar 

  41. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  42. Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In: Brothers, J.E. (ed.) Geometric Measure Theory and the Calculus of Variations (Arcata, Calif., 1984). Proceedings of Symposia in Pure Mathematics, vol. 44, pp. 441–464. American Mathematical Society, Providence, RI (1986). https://doi.org/10.1090/pspum/044/840292

  43. Stuvard, S.: Multiple valued sections of vector bundles: the reparametrization theorem for \(Q\)-valued functions revisited. arXiv:1705.00054 (2017)

  44. White, B.: Tangent cones to two-dimensional area-minimizing integral currents are unique. Duke Math. J. 50, 143–160 (1983). https://doi.org/10.1215/S0012-7094-83-05005-6

    Article  MathSciNet  MATH  Google Scholar 

  45. White, B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math. 160, 1–17 (1988). https://doi.org/10.1007/BF02392271

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is warmly thankful to Camillo De Lellis for suggesting him to study this problem, and for his precious guidance and support; and to Guido De Philippis, Francesco Ghiraldin, and Luca Spolaor for several useful discussions. The author also thanks the anonymous reviewer for carefully reading the manuscript, and for his/her valuable comments. The research of S.S. has been supported by the ERC Grant Agreement RAM (Regularity for Area Minimizing currents), ERC 306247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Stuvard.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuvard, S. Multiple valued Jacobi fields. Calc. Var. 58, 92 (2019). https://doi.org/10.1007/s00526-019-1545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1545-9

Mathematics Subject Classification

Navigation