Skip to main content
Log in

A local mountain pass type result for a system of nonlinear Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a singular perturbation problem for a system of nonlinear Schrödinger equations:

$$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$

where N = 2, 3, μ 1, μ 2, β > 0 and V 1(x), V 2(x): R N → (0, ∞) are positive continuous functions. We consider the case where the interaction β > 0 is relatively small and we define for \({P\in{\bf R}^N}\) the least energy level m(P) for non-trivial vector solutions of the rescaled “limit” problem:

$$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$

We assume that there exists an open bounded set \({\Lambda\subset{\bf R}^N}\) satisfying

$$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$

We show that (*) possesses a family of non-trivial vector positive solutions \({\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}\) which concentrates—after extracting a subsequence ε n → 0—to a point \({P_0\in\Lambda}\) with \({m(P_0)={\rm inf}_{P\in\Lambda}m(P)}\). Moreover (v 1ε (x), v 2ε (x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti A., Colorado E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartsch T., Wang Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Eq. 19(3), 200–207 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Bartsch T., Wang Z.-Q., Wei J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch T., Dancer N., Wang Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Diff. Eq. 37 3–4, 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  6. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  7. Busca J., Sirakov B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byeon J., jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185–200 (2008) 190(3), 549–551 (2008)

    Article  MathSciNet  Google Scholar 

  9. Byeon J., Jeanjean L.: Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discr. Contin. Dyn. Syst. 19(2), 255–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byeon J., Jeanjean L., Tanaka K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Commun. Partial Differ. Equ. 33(6), 1113–1136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dancer N., Wei J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361(3), 1189–1208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Figueiredo D.G., Lopes O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 149–161 (2008)

    Article  MATH  Google Scholar 

  13. del Pino M., Felmer P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. del Pino M., Felmer P.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324(1), 1–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. del Pino M., Kowalczyk M., Wei J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60(1), 113–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gui C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Partial Differ. Equ. 21(5–6), 787–820 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hirano N., Shioji N.: Multiple existence of solutions for coupled nonlinear Schrödinger equations. Nonlinear Anal. 68(12), 3845–3859 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ikoma N.: Uniqueness of positive solutions for a nonlinear elliptic system. Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ikoma, N.: Existence of standing waves for coupled nonlinear Schrödinger equations. Tokyo J. Math. (to appear)

  21. Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21(3), 287–318 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Li Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2(6), 955–980 (1997)

    MATH  Google Scholar 

  23. Lin T.-C., Wei J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 403–439 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lin T.-C., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in R n , n ≤ 3. Commun. Math. Phys. 255(3), 629–653 (2005) and Commun. Math. Phys. 277(2), 573–576 (2008); 277(2), 573–576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin T.-C., Wei J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2), 538–569 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maia L.A., Montefusco E., Pellacci B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Montefusco E., Pellacci B., Squassina M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10(1), 47–71 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pomponio A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227(1), 258–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1982)

    Article  MathSciNet  Google Scholar 

  30. Sirakov B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in R n. Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wei G.-M.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 332(2), 846–862 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wei G.-M.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations with bounded potentials. Chin. Ann. Math. Ser. B 29(3), 247–264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wei J., Weth T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18(3), 279–293 (2007)

    Article  MathSciNet  Google Scholar 

  34. Wei, J., Yao, W.: Note on uniqueness of positive solutions for some coupled nonlinear Schrödinger equations. Methods Anal. Appl. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Ikoma.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikoma, N., Tanaka, K. A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. 40, 449–480 (2011). https://doi.org/10.1007/s00526-010-0347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0347-x

Mathematics Subject Classification (2000)

Navigation