Skip to main content
Log in

Abstract

Let M and N be compact Riemannian manifolds. To prove the global existence and convergence of the heat flow for harmonic maps between M and N, it suffices to show the nonexistence of harmonic spheres and nonexistence of quasi-harmonic spheres. In this paper, we prove that, if the universal covering of N admits a nonnegative strictly convex function with polynomial growth, then there are no quasi-harmonic spheres nor harmonic spheres. This generalizes the famous Eells–Sampson’s theorem (Am J Math 86:109–169, [7]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang K., Ding W., Ye R.: Finite time blow-up of the heat flow of harmonic maps. J. Diff. Geom. 36, 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Chen Y., Ding W.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math. 99, 567–578 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ding, W.: An introduction to harmonic maps

  4. Ding W., Lin F.: A generalization of Eells–Sampson’s theorem. J. Partial Diff. Eq. 5, 13–22 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Ding W., Zhao Y.: Elliptic equations strongly degenerate at a point. Nonlinear Anal. 65, 1624–1632 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. Translated and revised by David Cruz-Uribe. American Mathematical Society, Providence, RI (2001)

  7. Eells J., Sampson J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–169 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan H.: Existence of the self-similar solutions in the heat flow of harmonic maps. Sci. China Ser. A 42, 113–132 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gastel A.: Singularities of first kind in the harmonic map and Yang-Mills heat flows. Math. Z. 242, 47–62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li J., Tian G.: A blow up formula for stationary harmonic maps. IMRN 14, 735–755 (1998)

    Article  MathSciNet  Google Scholar 

  11. Li J., Wang M.: Liouville theorems for self-similar solutions of heat flows. JEMS 11, 207–221 (2009)

    Article  MATH  Google Scholar 

  12. Lin F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps I. Ann. Math. 149, 785–829 (1999)

    Article  MATH  Google Scholar 

  13. Lin F., Wang C.: Harmonic and quasi-harmonic spheres. Commun. Anal. Geom. 7, 397–429 (1999)

    MATH  Google Scholar 

  14. Preiss D.: Geometry of measures in R n: Distribution, rectifiability, and densities. Ann. Math. 125, 537–643 (1987)

    Article  MathSciNet  Google Scholar 

  15. Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the Center for Mathematical Analysis, vol. 3. Australian National University Press, Canberra (1983)

  16. Struwe M.: On the evolution of harmonic maps in higher dimensions. J. Diff. Geom. 28, 485–502 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhu, X. Non existence of quasi-harmonic spheres. Calc. Var. 37, 441–460 (2010). https://doi.org/10.1007/s00526-009-0271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0271-0

Mathematics Subject Classification (2000)

Navigation