Skip to main content
Log in

Hölder regularity of optimal mappings in optimal transportation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

It is known that optimal mappings in optimal transportation problems are uniquely determined by corresponding potential functions. In this paper we prove various local properties of potential functions. In particular we obtain the C 1,α regularity of potential functions with optimal exponent α, which improves previous regularity results of Loeper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L.: Optimal transport maps in Monge-Kantorovich problem. In: Proc. International Cong. Math., Beijing, vol. 3, pp. 131–140 (2002)

  2. Ambrosio, L.: Lecture notes on optimal transport problems. Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, pp. 1–52. Springer, Berlin (2003)

  3. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli L.A.: Interior W 2,p estimates for solutions of the Monge–Ampère equations. Ann. Math. (2) 131(1), 135–150 (1990)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli L.A.: Some regularity properties of solutions of Monge Ampère equation. Commun. Pure Appl. Math. 44(8–9), 965–969 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caffarelli L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L.A.: Allocation maps with general cost functions. In: Partial Differential Equations and Applications. Lecture Notes in Pure and Appl. Math., vol. 177, pp. 29–35 (1996)

  8. Caffarelli L.A., Gutiérrez C.E., Huang Q.: On the regularity of reflector antennas. Ann. Math. (2) 167(1), 299–323 (2008)

    Article  MATH  Google Scholar 

  9. Delanoë Ph.: Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator. Ann. Inst. Henri Poincaré Anal. Nonlinear 8, 443–457 (1991)

    MATH  Google Scholar 

  10. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. In: Current Developments in Mathematics, pp. 65–126. Int. Press (1997)

  11. Gangbo W., McCann R.J.: Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci. Paris Ser. I Math. 321, 1653–1658 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  13. Jian H.Y., Wang X.-J.: Continuity estimates for the Monge–Ampère equation. SIAM J. Math. Anal. 39, 608–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers, New York (1948)

  15. Kim, Y.-H., McCann, R.J.: Continuity, curvature, and the general covariance of optimal transportation. Preprint at arXiv:0712.3077

  16. Liu, J.K., Trudinger, N.S., Wang, X.-J.: Interior C 2,α regularity for potential functions in optimal transportation, in preparation

  17. Loeper, G.: On the regularity of maps solutions of optimal transportation problems. Acta Math., to appear

  18. Ma X.-N., Trudinger N.S., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Rat. Mech. Anal. 177(2), 151–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Trudinger, N.S., Wang, X-J.: On the second boundary value problem for Monge-Ampère type equations and optimal transportation. Preprint at arXiv:math/0601086

  20. Trudinger, N.S., Wang, X-J.: On strict convexity and C 1 regularity of potential functions in optimal transportation. Arch. Rat. Mech. Anal., to appear

  21. Urbas J.: On the second boundary value problem of Monge-Ampère type. J. Reine Angew. Math. 487, 115–124 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Urbas, J.: Mass transfer problems. Lecture Notes. Univ. of Bonn (1998)

  23. Villani, C.: Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI (2003)

  24. Villani, C.: Optimal transport, old and new. Notes for the 2005 Saint-Flour summer school. Grundlehren der mathematischen Wissenschaften, Springer (2008, to appear)

  25. Wang X.-J.: Some counterexamples to the regularity of Monge-Ampère equations. Proc. Am. Math. Soc. 123(3), 841–845 (1995)

    Article  MATH  Google Scholar 

  26. Wang X.-J.: On the design of a reflector antenna. Inverse Probl. 12, 351–375 (1996)

    Article  MATH  Google Scholar 

  27. Wang X.-J.: On the design of a reflector antenna II. Calc. Var. PDE 20, 329–341 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiakun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J. Hölder regularity of optimal mappings in optimal transportation. Calc. Var. 34, 435–451 (2009). https://doi.org/10.1007/s00526-008-0190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0190-5

Mathematics Subject Classification (2000)

Navigation