Skip to main content

Advertisement

Log in

Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using CT images

  • S.I: AI-based e-diagnosis
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Due to the fast development of medical imaging technologies, medical image analysis has entered the period of big data for proper disease diagnosis. At the same time, intracerebral hemorrhage (ICH) becomes a serious disease which affects the injury of blood vessels in the brain regions. This paper presents an artificial intelligence and big data analytics-based ICH e-diagnosis (AIBDA-ICH) model using CT images. The presented model utilizes IoMT devices for data acquisition process. The presented AIBDA-ICH model involves graph cut-based segmentation model for identifying the affected regions in the CT images. To manage big data, Hadoop Ecosystem and its elements are mainly used. In addition, capsule network (CapsNet) model is applied as a feature extractor to derive a useful set of feature vectors. Finally, the presented AIBDA-ICH model makes use of the fuzzy deep neural network (FDNN) model to carry out classification process. For validating the superior performance of the AIBDA-ICH method, an extensive set of simulations were performed and the outcomes are examined under diverse aspects. The experimental values pointed out the improved e-diagnostic performance of the AIBDA-ICH model over the other compared methods with the precision and accuracy of 94.96% and 98.59%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Redondi A, Chirico M, Borsani L, Cesana M, Tagliasacchi M (2013) An integrated system based on wireless sensor networks for patient monitoring, localization and tracking. Ad Hoc Netw 11(1):39–53

    Article  Google Scholar 

  2. Chen H, Khan S, Kou B, Nazir S, Liu W, Hussain A (2020) A smart machine learning model for the detection of brain hemorrhage diagnosis based internet of things in smart cities. Complexity. https://doi.org/10.1155/2020/3047869

    Article  Google Scholar 

  3. Ang LM, Seng KP (2016) Big sensor data applications in urban environments. Big Data Res 4:1–12

    Article  Google Scholar 

  4. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, Filippi CG (2018) Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. Am J Neuroradiol 39(9):1609–1616

    Article  Google Scholar 

  5. Majumdar A, Brattain L, Telfer B, Farris C, Scalera J (2018) Detecting intracranial hemorrhage with deep learning. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp 583–587). IEEE

  6. Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, White RD (2017) Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285:923–931

    Article  Google Scholar 

  7. Grewal M, Srivastava MM, Kumar P, Varadarajan S (2018) RADnet: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018, pp 281–284

  8. Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, Wang X, Bai J, Cao K, Song Q, Zhang H, Chen W, Guo X, Xia J (2019) Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 29:6191–6201

    Article  Google Scholar 

  9. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S (2019) An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 3:173–182

    Article  Google Scholar 

  10. Jnawali K, Arbabshirani MR, Rao N, Patel AA (2018) Deep 3D convolution neural network for CT brain hemorrhage classification. In: Medical imaging 2018: computer-aided diagnosis; International Society for Optics and Photonics: Washington, DC, USA, 2018, volume 10575, p 105751C

  11. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, Moore GJ (2018) Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med 1:9

    Article  Google Scholar 

  12. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, Chen J, Abcede H, Shafie M, Sugrue L, Filippi CG (2018) Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. Am J Neuroradiol 39(9):1609–1616

    Article  Google Scholar 

  13. Majumdar A, Brattain L, Telfer B, Farris C, Scalera J (2018) Detecting intracranial hemorrhage with deep learning. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 583–587

  14. Abdelaziz A (2019) A machine learning model for predicting of chronic kidney disease based internet of things and cloud computing in smart cities. Security in smart cities: models, applications, and challenges. Springer, Berlin, pp 93–114

    Chapter  Google Scholar 

  15. Al-Majeed SS, Al-Mejibli IS, Karam J (2015) Home telehealth by internet of things (IoT). In: Proceedings of the 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE), Halifax, Canada

  16. Dwivedi A, Srivastava G, Dhar S, Singh R (2019) A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 19(2):326

    Article  Google Scholar 

  17. Firouzi F (2018) Internet-of-things and big data for smarter Healthcare: from device to architecture, applications and analytics. Elsevier, Amsterdam

  18. Hassanalieragh M (2015) Health monitoring and management using Internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges. In: Proceedings of the 2015 IEEE international conference on services computing, New York, NY, USA

  19. Jabbar S (2017) Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel Commun Mobile Comput. https://doi.org/10.1155/2017/9731806

    Article  Google Scholar 

  20. Maktoubian J, Ansari K (2019) An IoT architecture for preventive maintenance of medical devices in healthcare organizations. Heal Technol 9(3):233–243

    Article  Google Scholar 

  21. Mutlag AA, Abd Ghani MK, Arunkumar N, Mohammed MA, Mohd O (2019) Enabling technologies for fog computing in healthcare IoT systems. Future Gener Comput Syst 90:62–78

    Article  Google Scholar 

  22. Shakeel PM (2018) Maintaining security and privacy in health care system using learning based deep-Q-networks. J Med Syst 42(10):186

    Article  Google Scholar 

  23. Selvi RT, Muthulakshmi I (2020) Modelling the map reduce based optimal gradient boosted tree classification algorithm for diabetes mellitus diagnosis system. J Ambient Intell Human Comput, pp 1–14

  24. Zheng Q, Li H, Fan B, Wu S, Xu J (2018) Integrating support vector machine and graph cuts for medical image segmentation. J Vis Commun Image Represent 55:157–165

    Article  Google Scholar 

  25. Sezer A, Sezer HB (2019) Capsule network-based classification of rotator cuff pathologies from MRI. Comput Electr Eng 80:106480

    Article  Google Scholar 

  26. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: 31st conference on neural information processing systems

  27. Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2016) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012

    Article  Google Scholar 

  28. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 689–696

  29. Anupama CSS, Sivaram M, Lydia EL, Gupta D, Shankar K (2020) Synergic deep learning model-based automated detection and classification of brain intracranial hemorrhage images in wearable networks. Pers Ubiquit Comput. https://doi.org/10.1007/s00779-020-01492-2

    Article  Google Scholar 

  30. Hssayeni MD, Croock MS, Salman AD, Al-khafaji HF, Yahya ZA, Ghoraani B (2020) Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1):14

    Article  Google Scholar 

  31. Davis V, Devane S (2017) Diagnosis and classification of brain hemorrhage. In: 2017 international conference on advances in computing, communication and control (ICAC3). IEEE, pp 1–6

  32. Danilov G, Kotik K, Negreeva A, Tsukanova T, Shifrin M, Zakharova N, Batalov A, Pronin I, Potapov A (2020) Classification of intracranial hemorrhage subtypes using deep learning on CT scans. Stud Health Technol Inform 272:370–373

    Google Scholar 

  33. Karki M, Cho J, Lee E, Hahm MH, Yoon SY, Kim M, Ahn JY, Son J, Park SH, Kim KH, Park S (2020) CT window trainable neural network for improving intracranial hemorrhage detection by combining multiple settings. Artif Intell Med 106:101850

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ministry of Science and Higher Education of the Russian Federation (Government Order FENU-2020-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, R.F., Escorcia-Gutierrez, J., Gamarra, M. et al. Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using CT images. Neural Comput & Applic 35, 16037–16049 (2023). https://doi.org/10.1007/s00521-021-06240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06240-y

Keywords

Navigation