Skip to main content

Advertisement

Log in

Optimized metamaterial-loaded fractal antenna using modified hybrid BF-PSO algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper proposes optimization of square split-ring resonator (SRR) metamaterial unit cell using modified hybrid bacterial foraging–particle swarm optimization (BF-PSO). Optimized metamaterial unit cells are loaded into novel designed square fractal antenna for its bandwidth enhancement. The presented research is alienated in three phases: Novel design of microstrip line-fed square fractal antenna with defected ground structure is proposed in the initial phase that provides dual band performance. In second phase, with the aim of bandwidth enhancement, quasi-static model of SRR unit cell is used to optimize its structural parameters so that optimized structure resonates at desired frequency region. Modifications are included in hybrid BF-PSO algorithm as per size constraints of SRR unit cell to be optimized and for improving the convergence behavior of algorithm. The performance of modified hybrid BF-PSO algorithm is assessed against four other evolutionary techniques named as classical BFO, chaos PSO, IWO and ABC. In later phase, optimized SRR unit cells are loaded into initially designed square fractal antenna that results in broadband performance suitable for upper S-band and lower C-band wireless applications. The designed square fractal antenna without and with SRR unit cells is fabricated and tested to verify the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Choukiker YK, Behera SK (2014) Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics. IET Microwaves Antennas Propag 8:506–512. https://doi.org/10.1049/iet-map.2013.0235

    Article  Google Scholar 

  2. Werner DH, Haupt RL, Werner PL (1999) Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Antennas Propag Mag 41:37–59. https://doi.org/10.1109/74.801513

    Article  Google Scholar 

  3. Werner DH, Ganguly S (2003) An overview of fractal antenna engineering research. IEEE Antennas Propag Mag 45:38–57. https://doi.org/10.1109/MAP.2003.1189650

    Article  Google Scholar 

  4. Kim D-J, Choi J-H, Kim Y-S (2013) CPW-fed ultrawideband flower-shaped circular fractal antenna. Microw Opt Technol Lett 55:1792–1795. https://doi.org/10.1002/mop

    Article  Google Scholar 

  5. Gianvittorio JP, Rahmat-Samii Y (2002) Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag Mag 44:20–36. https://doi.org/10.1109/74.997888

    Article  Google Scholar 

  6. Kumar Y, Singh S (2015) A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wirel Pers Commun 84:57–67. https://doi.org/10.1007/s11277-015-2593-x

    Article  Google Scholar 

  7. Rani S, Singh AP (2014) On the design and analysis of modified koch curve fractal antenna. J Inst Eng Ser B 94:231–236. https://doi.org/10.1007/s40031-013-0061-0

    Article  Google Scholar 

  8. Shafie SN, Adam I, Soh PJ (2010) Design and simulation of a modified minkowski fractal antenna for tri-band application. In: 4th international conference on mathematical/analytical modelling and computer simulation (AMS). IEEE, Kota Kinabalu, Malaysia, pp 567–570

  9. Baliarda CP, Borau CB, Rodero MN, Robert JR (2000) An iterative model for fractal antennas: application to the Sierpinski gasket antenna. IEEE Trans Antennas Propag 48:713–719. https://doi.org/10.1109/8.855489

    Article  Google Scholar 

  10. Kaur A, Saluja N, Ubhi JS (2012) Design Of Sierpinski gasket multiband fractal antenna for wireless applications. IOSR J Electron Commun Eng 2:5–6

    Google Scholar 

  11. Srivastava DK, Khanna A, Saini JP (2016) Design of a wideband gap-coupled modified square fractal antenna. J Comput Electron 15:239–247. https://doi.org/10.1007/s10825-015-0740-y

    Article  Google Scholar 

  12. Dorostkar MA, Azim R, Islam MT (2013) A novel Γ-shape fractal antenna for wideband communications. Procedia Technol 11:1285–1291. https://doi.org/10.1016/j.protcy.2013.12.326

    Article  Google Scholar 

  13. Sarkar T, Chakravorty J, Ghatak R (2015) Broadband fractal slot planar antenna. In: Third international conference on computer, communication, control and information technology (C3IT). IEEE, Hooghly, India, pp 3–7

  14. Singh A, Singh S (2015) Design and optimization of a modified Sierpinski fractal antenna for broadband applications. Appl Soft Comput 38:843–850. https://doi.org/10.1016/j.asoc.2015.10.013

    Article  Google Scholar 

  15. Kushwaha N, Kumar R (2013) An UWB fractal antenna with defected ground structure and swastika shape electromagnetic band gap. Prog Electromagn Res B 52:383–403. https://doi.org/10.2528/PIERB13051509

    Article  Google Scholar 

  16. Bilotti F, Toscano A, Vegni L (2007) Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans Antennas Propag 55:2258–2267. https://doi.org/10.1109/TAP.2007.901950

    Article  Google Scholar 

  17. Zhi-ning C (2014) Metamaterials and metamaterial-based antenna technology. J Shanghai Univ Nat Sci 20:531–540. https://doi.org/10.3969/j.issn.1007-2861.2014.03.011

    Article  Google Scholar 

  18. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of epsilon and μ. Sov Phys Uspekhi 10:509–514. https://doi.org/10.1070/PU1968v010n04ABEH003699

    Article  Google Scholar 

  19. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084. https://doi.org/10.1109/22.798002

    Article  Google Scholar 

  20. Shelby RA, Smith DR, Nemat-Nasser SC, Schultz S (2001) Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett 78:489–491. https://doi.org/10.1063/1.1343489

    Article  Google Scholar 

  21. Ekmekci E, Topalli K, Akin T, Turhan-Sayan G (2009) A tunable multi-band metamaterial design using micro-split SRR structures. Opt Express 17:16046–16058. https://doi.org/10.1364/OE.17.016046

    Article  Google Scholar 

  22. Rani MSA, Kamal S, Rahim A et al (2014) Electromagnetic behaviors of thin film CPW-fed CSRR loaded on UWB transparent antenna. IEEE Antennas Wirel Propag Lett 13:1239–1242. https://doi.org/10.1109/LAWP.2014.2332514

    Article  Google Scholar 

  23. Sharma R, Singh H (2015) Left handed metamaterial antenna design for GSM 1.8 GHz applications. In: 2nd international conference on recent advances in engineering & computational sciences (RAECS). IEEE, Chandigarh, India, pp 1–5

  24. Li D, Szabó Z, Qing X et al (2012) A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag 60:6018–6023. https://doi.org/10.1109/TAP.2012.2213231

    Article  Google Scholar 

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks. IEEE, Perth, WA, Australia, pp 1942–1948

  26. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22:52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  27. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  28. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization : artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen H, Zhu Y, Hu K (2011) Adaptive bacterial foraging optimization. Abstr Appl Anal Hindawi Publ Corp. https://doi.org/10.1155/2011/108269

    Article  MATH  Google Scholar 

  30. Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci (NY) 177:3918–3937. https://doi.org/10.1016/j.ins.2007.04.002

    Article  Google Scholar 

  31. Korani WM, Dorrah HT, Emara HM (2009) Bacterial foraging oriented by particle swarm optimization strategy for PID tuning. In: IEEE international symposium on computational intelligence in robotics and automation. IEEE, Daejeon, South Korea, pp 1–6

  32. Rao RV, Saroj A (2017) A self-adaptive multi-population based jaya algorithm for engineering Optimization. Swarm Evol Comput 37:1–26. https://doi.org/10.1016/j.swevo.2017.04.008

    Article  Google Scholar 

  33. Singh G, Gupta MK, Mia M, Sharma VS (2018) Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int J Adv Manuf Technol 97:481–494. https://doi.org/10.1007/s00170-018-1911-3

    Article  Google Scholar 

  34. Prakash C, Singh S, Singh M et al (2018) Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms. Int J Adv Manuf Technol 101:1107–1123. https://doi.org/10.1007/s00170-018-3017-3

    Article  Google Scholar 

  35. Dhaliwal BS, Pattnaik SS (2016) Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Comput Appl 27:585–592. https://doi.org/10.1007/s00521-015-1879-y

    Article  Google Scholar 

  36. Dhaliwal BS, Pattnaik SS (2016) BFO–ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system. Neural Comput Appl 28:917–928. https://doi.org/10.1007/s00521-016-2402-9

    Article  Google Scholar 

  37. Singh U, Salgotra R (2016) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2457-7

    Article  Google Scholar 

  38. Salgotra R, Singh U (2016) A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2833-3

    Article  Google Scholar 

  39. Babayigit B, Senyigit E (2017) Design optimization of circular antenna arrays using Taguchi method. Neural Comput Appl 28:1443–1452. https://doi.org/10.1007/s00521-015-2162-y

    Article  Google Scholar 

  40. Choudhury B, Manickam S, Jha RM (2013) Particle Swarm Optimization for Multiband Metamaterial Fractal Antenna. J Optim Hindawi Publ Corp. https://doi.org/10.1155/2013/989135

    Article  Google Scholar 

  41. Deshmukh AA, Phatak N, Nagarbowdi S (2014) Broadband proximity fed rectangular slot cut C-shaped microstrip antenna array. In: International conference on circuits, systems, communication and information technology applications (CSCITA). IEEE, Mumbai, India, pp 7–12

  42. Baena JD, Bonache J, Martín F et al (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Tech 53:1451–1460. https://doi.org/10.1109/TMTT.2005.845211

    Article  Google Scholar 

  43. Rajni Singh G, Marwaha A (2015) Modeling of split ring resonators loaded microstrip line with different orientations. Int J Electr Comput Eng 5:1363–1371

    Google Scholar 

  44. Bojanic R, Milosevic V, Jokanovic B et al (2014) Enhanced modelling of split-ring resonators couplings in printed circuits. IEEE Trans Microw Theory Tech 62:1605–1615. https://doi.org/10.1109/TMTT.2014.2332302

    Article  Google Scholar 

  45. Gupta N, Saxena J, Bhatia KS (2017) Design optimization of CPW-fed microstrip patch antenna using constrained ABFO algorithm. Soft Comput. https://doi.org/10.1007/s00500-017-2775-4

    Article  Google Scholar 

  46. Bansal JC, Singh PK, Saraswat M et al (2011) Inertia weight strategies in particle swarm optimization. In: Third world congress on nature and biologically inspired computing (NaBIC). IEEE, pp 640–647

  47. Feng Y, Teng G, Wang A, Yao Y (2007) Chaotic inertia weight in particle swarm optimization. In: Second international conference on innovative computing, information and control (ICICIC’07). IEEE, Kumamoto, Japan, pp 7–10

  48. Bilotti F, Toscano A, Vegni L et al (2007) Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Trans Microw Theory Tech 55:2865–2873. https://doi.org/10.1109/TMTT.2007.909611

    Article  Google Scholar 

  49. Numan AB, Sharawi MS (2013) Extraction of material parameters for metamaterials using a full-wave simulator. IEEE Antennas Propag Mag 55:202–211. https://doi.org/10.1109/MAP.2013.6735515

    Article  Google Scholar 

  50. Mia M, Khan A, Dhar NR (2017) Performance prediction of high-pressure coolant assisted turning of Ti–6Al–4V. Int J Adv Manuf Technol 90:1433–1445. https://doi.org/10.1007/s00170-016-9468-5

    Article  Google Scholar 

  51. Mia M, Ranjan N (2017) Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3192-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Saxena, J. & Bhatia, K.S. Optimized metamaterial-loaded fractal antenna using modified hybrid BF-PSO algorithm. Neural Comput & Applic 32, 7153–7169 (2020). https://doi.org/10.1007/s00521-019-04202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04202-z

Keywords