Skip to main content
Log in

Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters

  • S.I. : EANN 2017
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this work, we focus in the analysis of dermoscopy images using convolutional neural networks (CNNs). More specifically, we investigate the value of augmenting CNN inputs with the response of mid-level computer vision filters, using the traditional inputting of simple RGB pixel values as baseline. The proposed methodology is applied on two pattern recognition problems with clinical significance: the binary classification of skin lesions in dermoscopy images into “malignant” and “non-malignant” (nevus skin lesions) cases and the four-class, superpixel classification into differential structures that appear in skin lesions. The transfer learning technique is also utilized to compensate for the limited size of the available training image datasets. Results show that filter-based input augmentation using the response of mid-level computer vision filters significantly improves the classification accuracy achieved by the CNN architectures and simplifies the weights of the receptive fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Reed KB, Brewer JD, Lohse CM, Bringe KE, Pruit CN, Gibson LE (2012) Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin Proc 87(4):328–334

    Article  Google Scholar 

  2. Stern RS (2010) Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol 146(3):279–282

    Article  Google Scholar 

  3. Rogers HW, Weinstock MA, Harris AR et al (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146(3):283–287

    Article  Google Scholar 

  4. American Cancer Society (2015) Cancer facts and figures. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/. Accessed 12 May 2015

  5. Maglogiannis I, Doukas CN (2009) Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 13(5):721–733

    Article  Google Scholar 

  6. Menzies SW (2006) Cutaneous melanoma: making a clinical diagnosis, present and future. Dermatol Ther 19(1):32–39

    Article  Google Scholar 

  7. Korotkov K, Garcia R (2012) Computerized analysis of pigmented skin lesions: a review. Artif Intell Med 56(2):69–90

    Article  Google Scholar 

  8. Maglogiannis I, Delibasis K (2015) Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Progr Biomed 118(2):124–133 (ISSN 0169-2607)

    Article  Google Scholar 

  9. Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M (2001) A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inf 34(1):28–36

    Article  Google Scholar 

  10. Maglogiannis I, Zafiropoulos E (2004) Utilizing support vector machines for the characterization of digital medical images. BMC Med Inf Decis Mak 4(4)

  11. Maragoudakis M, Maglogiannis I (2010) Skin lesion diagnosis from images using novel ensemble classification techniques. In: Information technology and applications in biomedicine (ITAB), 2010 10th IEEE international conference on IEEE, pp 1–5

  12. Codella N, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza S, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2017) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (ISIC). arXiv: 1710.05006

  13. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  14. Delibasis K, Kottari K, Maglogiannis I (2015) Automated detection of streaks in dermoscopy images. In: IFIP international conference on artificial intelligence applications and innovations. Springer, Berlin, pp 45–60

  15. Maglogiannis I, Delibasis KK (2015) Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Progr Biomed 118(2):124–133

    Article  Google Scholar 

  16. Sadeghi M, Lee TK, McLean D, Harvey Lui, Atkins MS (2012) Oriented pattern analysis for streak detection in dermoscopy images. In: Ayache N et al (eds) MICCAI 2012, Part I, LNCS 7510, pp 298–306

  17. Sadeghi M, Lee TK, McLean D, Lui H, Atkins MS (2013) Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 32(5):849–861

    Article  Google Scholar 

  18. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  19. Wang X, Guo Y, Wang Y, Yu J (2017) Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3138-x

    Article  Google Scholar 

  20. Georgakopoulos SV, Kottari K, Delibasis K, Plagianakos VP, Maglogiannis I (2018) Pose recognition using convolutional neural networks on omni-directional images. Neurocomputing 280:23–31

    Article  Google Scholar 

  21. Öztürk Ş, Akdemir B (2017) A convolutional neural network model for semantic segmentation of mitotic events in microscopy images. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3333-9

    Article  Google Scholar 

  22. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115

    Article  Google Scholar 

  23. Yu L, Chen H, Dou Q, Qin J, Heng PA (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004

    Article  Google Scholar 

  24. Kawahara J, BenTaieb A, Hamarneh G (2016) Deep features to classify skin lesions. In: Biomedical imaging (ISBI), 2016 IEEE 13th international symposium on IEEE, pp 1397–1400

  25. Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):556

    Article  Google Scholar 

  26. Huang Z, Pan Z, Lei B (2017) Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens 9:907

    Article  Google Scholar 

  27. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  28. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  29. Bottou L (1998) On-line learning and stochastic approximations. In: Saad D (ed) In on-line learning in neural networks. Cambridge University Press, UK

    MATH  Google Scholar 

  30. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  31. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T Van, Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(43):43–72

    Article  Google Scholar 

  32. Tuytelaars T, Mikolajczy K (2007) kLocal invariant feature detectors: a survey. Comput Gr Vis 3(3):177–280

    Google Scholar 

  33. Frangi A, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proceedings of the 1st international conference of medical image computing and computer-assisted intervention (MICCAI 1998), pp 130–137

  34. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y (2000) Model based detection of tubular structures in 3d images. Comput Vis Image Underst 80(2):130–171

    Article  MATH  Google Scholar 

  35. Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(2):117–154

    Article  Google Scholar 

  36. Daugman JG et al (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Opt Soc Am J A Opt Image Sci 2(7):1160–1169

    Article  Google Scholar 

  37. Weldon TP, Higgins WE, Dunn DF (1996) Efficient Gabor filter design for texture segmentation. Pattern Recogn 29(12):2005–2015

    Article  Google Scholar 

  38. Li M, Staunton RC (2008) Optimum Gabor filter design and local binary patterns for texture segmentation. Pattern Recogn Lett 29(5):664–672

    Article  Google Scholar 

  39. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates Inc., NewYork, pp 1097–1105

    Google Scholar 

  40. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: CVPR09

  41. Georgakopoulos SV, Iakovidis DK, Vasilakakis M, Plagianakos VP, Koulaouzidis A (2016) Weakly-supervised convolutional learning for detection of inflammatory gastrointestinal lesions. In: 2016 IEEE international conference on imaging systems and techniques (IST), pp 510–514

  42. Iakovidis DK, Koulaouzidis A (2015) Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 12(3):172–186

    Article  Google Scholar 

  43. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? Adv Neural Inf Process Syst 27:3320–3328

    Google Scholar 

  44. Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell 30(11):1958–1970

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation for the donation of the Titan X Pascal GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Maglogiannis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgakopoulos, S.V., Kottari, K., Delibasis, K. et al. Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters. Neural Comput & Applic 31, 1805–1822 (2019). https://doi.org/10.1007/s00521-018-3711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3711-y

Keywords

Navigation