Skip to main content

Advertisement

Log in

Speed control of SRM supplied by photovoltaic system via ant colony optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a speed control of switched reluctance motor supplied by photovoltaic system. The proposed design of the speed controller is formulated as an optimization problem. Ant colony optimization (ACO) algorithm is employed to search for the optimal proportional integral (PI) parameters of the proposed controller by minimizing the time domain objective function. The behavior of the proposed ACO has been estimated with the behavior of genetic algorithm (GA) in order to prove the superior efficiency of the proposed ACO in tuning PI controller over GA. Also, the behavior of the proposed controller has been estimated with respect to the change of load torque, variable reference speed, ambient temperature and radiation. Simulation results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on GA over a wide range of operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

N r and N s :

Number of rotor and stator poles, respectively

q :

Number of phases

C r :

The commutation ratio

β s and β r :

The stator and rotor pole arc, respectively

I and V :

Module output current and voltage

I c and V c :

Cell output current and voltage

I ph and V ph :

The light generation current and voltage

I s :

Cell reverse saturation current

I sc :

The short circuit current

I o :

The reverse saturation current

R s :

The module series resistance

T :

Cell temperature

K :

Boltzmann’s constant

q o :

Electronic charge

KT :

(0.0017 A/°C) Short circuit current temperature coefficient

G :

Solar illumination in W/m2

E g :

Band gap energy for silicon

A :

Ideality factor

T r :

Reference temperature

I or :

Cell rating saturation current at T r

n s :

Series-connected solar cells

k i :

Cell temperature coefficient

k :

The duty cycle of the pulse width modulation (PWM)

V B and I B :

The output converter voltage and current, respectively

J t :

The objective function

K P and K i :

The parameters of PI controller

n :

Number of nodes

m :

Number of ants

t max :

Maximum iteration

d max :

Maximum distance for each ant’s tour

β :

The relative importance of pheromone versus distance (β > 0)

ρ :

Heuristically defined coefficient (0 < ρ < 1)

α :

Pheromone decay parameter (0 < α < 1)

q a :

Parameter of the algorithm (0 < q a < 1)

τ o :

Initial pheromone level

d i :

Distance between two nodes

u :

Unvisited node

r :

Current node

τ ij :

The pheromone trial deposited between node i and j by ant k

η ij :

The visibility and it equals to the inverse of the distance (η ij  = 1/d ij )

T k :

The path effectuated by the ant k at a given time

References

  1. Krishnan R (2001) Switched reluctance motor drives. modeling, simulation, analysis, design and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Veltman A, Pulle DWJ, Doncker RD (2007) Fundamentals of electrical drives. Springer, Berlin. ISBN 978-1-4020-5503-4

    Google Scholar 

  3. Gieras JF (2009) Advancements in electric machines. Springer, Berlin. ISBN 978-1-4020-9006-6

    Google Scholar 

  4. Doncker RD, Pulle DWJ, Veltman A (2011) Advanced electrical drives: analysis, modeling, control. Springer, Berlin. ISBN 978-94-007-0181-6

    Book  Google Scholar 

  5. Chen H, Zhang D, Cong ZY, Zhang ZF (2002) Fuzzy logic control for switched reluctance motor drive. In: Proceedings of the first international conference on machine learning and cybernetics, Beijing, 4–5 November 2002, pp 145–149

  6. Jie X, Changliang X (2007) Fuzzy logic based adaptive pid control of switched reluctance motor drive. In: Proceedings of the 26th Chinese control conference, Zhangjiajie, Hunan, China, 26–31 July 2007, pp 41–45

  7. Karakas E, Vardarbasi S (2007) Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network. Sadhana 32(5):587–596

    Article  Google Scholar 

  8. Gupta RA, Bishnoi SK (2010) Sensorless control of switched reluctance motor drive with fuzzy logic based rotor position estimation. Int J Comput Appl 1(22):72–79

    Google Scholar 

  9. Paramasivam S, Arumugam R (2005) Hybrid fuzzy controller for speed control of switched reluctance motor drives. Energy Convers Manag 46(9–10):1365–1378

    Article  Google Scholar 

  10. Rares T, Virgil C, Lorand S, Calin M (2011) Artificial intelligence based electronic control of switched reluctance motors. J Comput Sci Control Syst 4(1):193–198

    Google Scholar 

  11. Xia CL, Xiu J (2006) RBF ANN nonlinear prediction model based adaptive PID control of switched reluctance motor drive. In: Proceedings of the 13th international conference, ICONIP 2006, part III, Hong Kong, China, 3–6 October 2006, pp 626–635

  12. Ali BS, Hasanien HM, Galal Y (2011) Speed control of switched reluctance motor using artificial neural network controller. Comput Intell Inf Technol Commun Comput Inf Sci 250:6–14

    Article  Google Scholar 

  13. Rajendran A, Padma S (2012) H-infinity robust control technique for controlling the speed of switched reluctance motor. Front Electr Electron Eng 7(3):337–346

    Google Scholar 

  14. Lascu C, Boldea I, Blaabjerg F (2003) Very low speed sensorless variable structure control of induction machine drives without signal injection. In: IEEE international electric machines and drives conference. IEMDC’03, vol 3, pp 1395–1401

  15. Lascu C, Boldea I, Blaabjerg F (2013) Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives. In: 39th Annual conference of the IEEE industrial electronics society, IECON 2013, pp 3171–3176

  16. Yousef AM (2012) Switched reluctance motor sensorless fed by photovoltaic system based on adaptive PI controller, vol 35(4). Engineering Research Journal (ERJ), Minoufiya University, pp 333–342

  17. Kalaivani L, Subburaj P, Iruthayarajan MW (2013) Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (NSGA-II). Int J Electr Power Energy Syst 53:69–77

    Article  Google Scholar 

  18. Mahendiran TV, Thanushkodi K, Thangam P (2012) Speed control of switched reluctance motor using new hybrid particle swarm optimization. J Comput Sci 8(9):1473–1477

    Article  Google Scholar 

  19. Oshaba AS, Ali ES (2013) Speed control of induction motor fed from wind turbine via particle swarm optimization based PI controller. Res J Appl Sci Eng Technol 5(18):4594–4606

    Google Scholar 

  20. Oshaba AS, Ali ES (2013) Swarming speed control for dc permanent magnet motor drive via pulse width modulation technique and DC/DC converter. Res J Appl Sci Eng Technol 5(18):4576–4583

    Google Scholar 

  21. Oshaba AS, Ali ES (2014) Bacteria foraging: a new technique for speed control of DC series motor supplied by photovoltaic system. Int J WSEAS Trans Power Syst 9:185–195

    Google Scholar 

  22. Daryabeigi E, Dehkordi BM (2014) Smart bacterial foraging algorithm based controller for speed control of switched reluctance motor drives. Int J Electr Power Energy Syst 62:364–373

    Article  Google Scholar 

  23. Oshaba AS, Ali ES, Abd-Elazim SM (2014) MPPT control design of PV generator powered DC motor-pump system based on artificial bee colony algorithm. J Electr Eng 14(4):315–324

    Google Scholar 

  24. Ali ES (2015) Speed control of dc series motor supplied by photovoltaic system via firefly algorithm. Neural Comput Appl 26(6):1321–1332

    Article  Google Scholar 

  25. Ali ES (2015) Imperialist competitive algorithm: a novel approach for speed control of induction motor supplied by wind turbine. Int J Electr Eng 15(1):375–382

    Google Scholar 

  26. Oshaba AS, Ali ES, Abd-Elazim SM (2015) BAT algorithm: a novel approach for MPPT control design of PV generator supplied SRM. Int J Electr Eng 15(1):293–302

    Google Scholar 

  27. Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, Elsevier Science Publisher, pp 134–142

  28. Chitra N, Prabaakaran K, Senthil Kumar A, Munda J (2013) Ant colony optimization adopting control strategies for power quality enhancement in autonomous microgrid. Int J Comput Appl 63(13):34–38

    Google Scholar 

  29. Abou El-Ela AA, Kinawy AM, Mouwafi MT, El Sehiemy RA (2010) Optimal reactive power dispatch using ant colony optimization algorithm. In: Proceedings of the 14th international Middle East power systems conference (MEPCON’10), Cairo University, Egypt, 19–21 December 2010, pp 960–965

  30. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2:353–373

    Article  Google Scholar 

  31. Vijayakumar K, Karthikeyan R, Paramasivam S, Arumugam R, Srinivas KN (2008) Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review. IEEE Trans Magn 44(12):4605–4617

    Article  Google Scholar 

  32. Oshaba AS (2013) Performance of a sensorless SRM drive fed from a photovoltaic system. Res J Appl Sci Eng Technol 6(17):3165–3173

    Google Scholar 

  33. Oshaba AS (2013) Control strategy for a high speed SRM fed from a photovoltaic source. Res J Appl Sci Eng Technol 6(17):3174–3180

    Google Scholar 

  34. Saied MM, Hanafy AA (1991) A contribution to the simulation and design optimization of photovoltaic systems. IEEE Trans Energy Convers 6:401–406

    Article  Google Scholar 

  35. Hussein K, Muta I, Hoshino T, Oskada M (1995) Maximum photovoltaic power tracking; an algorithm for rapidly changing atmospheric conditions. IEEE Proc Gener Transm Distrib 142(1):59–64

    Article  Google Scholar 

  36. Lu CF, Liu CC, Wu CJ (1995) Dynamic modeling of battery energy storage system and application to power system stability. IEE Proc Gener Transm Distrib 142(4):429–435

    Article  Google Scholar 

  37. Bose BK (2002) Modern power electronics and AC drives. Prentice-Hall, New Jersey

    Google Scholar 

  38. Lin PZ, Hsu CF, Lee TT (2005) Type-2 fuzzy logic controller design for buck DC-DC converters. In: Proceedings of the IEEE international conference on fuzzy systems, pp 365–370

  39. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278

    Article  MathSciNet  MATH  Google Scholar 

  40. Man KJ, Yi Z (2012) Application of an improved ant colony optimization on generalized traveling salesman problem. Energy Procedia 17(Part A):319–325

    Article  Google Scholar 

  41. Omar M, Soliman M, Abdel Ghany AM, Bendary F (2013) Ant colony optimization based PID for single area load frequency control. In: Proceedings of international conference on modelling, identification and control (ICMIC), Cairo, Egypt, pp 119–123

  42. Ünal M, Ak A, Topuz V, Erdal H (2013) Optimization of PID controllers using ant colony and genetic algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  43. Simon D (2013) Evolutionary optimization algorithms, 1st edn. Wiley, New York

    Google Scholar 

  44. Ali ES, Abd-Elazim SM (2013) Power system stability enhancement via bacteria foraging optimization algorithm. Int Arab J Sci Eng 38(3):599–611

    Article  Google Scholar 

  45. Abd-Elazim SM, Ali ES (2013) Synergy of particle swarm optimization and bacterial foraging for TCSC damping controller design. Int J WSEAS Trans Power Syst 8(2):74–84

    Google Scholar 

  46. Ali ES (2014) Optimization of power system stabilizers using BAT search algorithm. Int J Electr Power Energy Syst 61(C):683–690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abd Elazim.

Appendix

Appendix

The parameters of the studied system are as shown below:

  1. (a)

    SRM parameters [26]: N s = 8, N r = 6, rating speed = 13,700 r.p.m, C r = 0.8, q = 4, phase resistance of stator = 17 Ω, phase inductance of aligned position = 0.605 H, phase inductance of unaligned position = 0.1555 H, step angle = 15°.

  2. (b)

    PV parameters [26]: A = 1.2153; E g = 1.11; I or  = 2.35e − 8; I sc = 4.8; T r = 300; K = 1.38e − 23; n s = 36; q o  = 1.6e − 19; k i  = 0.0021.

  3. (c)

    Genetic parameters: max generation = 100; population size = 50; crossover probabilities = 0.75; mutation probabilities = 0.1.

  4. (d)

    ACO parameters: n = 10, m = 5, t max = 5, d max = 49, β = 2, ρ = 0.6, α = 0.1, q a = 0.6, τ o  = 0.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshaba, A.S., Ali, E.S. & Abd Elazim, S.M. Speed control of SRM supplied by photovoltaic system via ant colony optimization algorithm. Neural Comput & Applic 28, 365–374 (2017). https://doi.org/10.1007/s00521-015-2068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2068-8

Keywords

Navigation