Skip to main content
Log in

Design of intelligent power controller for DC–DC converters using CMAC neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

DC–DC converters are the devices which can convert a certain electrical voltage to another level of electrical voltage. They are very popularly used because of the high efficiency and small size. This paper proposes an intelligent power controller for the DC–DC converters via cerebella model articulation controller (CMAC) neural network approach. The proposed intelligent power controller is composed of a CMAC neural controller and a robust controller. The CMAC neural controller uses a CMAC neural network to online mimic an ideal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. Finally, a comparison among a PI control, adaptive neural control and the proposed intelligent power control is made. The experimental results are provided to demonstrate the proposed intelligent power controller can cope with the input voltage and load resistance variations to ensure the stability while providing fast transient response and simple computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pressman AI (1998) Switching power supply design. McGraw-Hill, New York

    Google Scholar 

  2. Alvarez-Ramirez J, Cervantes I, Espinosa-Perez G, Maya P, Morales A (2001) A stable design of PI control for DC–DC converters with an RHS zero. IEEE Trans Circuits Syst I 48(1):103–106

    Article  Google Scholar 

  3. Mazumder SK, Nayfeh AH, Borojevic D (2002) Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428–437

    Article  Google Scholar 

  4. Lopez M, Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428

    Article  Google Scholar 

  5. Viswanathan K, Oruganti R, Srinivasan D (2005) Nonlinear function controller: a simple alternative to fuzzy logic controller for a power electronic converter. IEEE Trans Ind Electron 52(5):1439–1448

    Article  Google Scholar 

  6. He D, Nelms RM (2005) Fuzzy logic average current-mode control for DC–DC converters using an inexpensive 8-bit microcontroller. IEEE Trans Ind Appl 41(6):1531–1538

    Article  Google Scholar 

  7. Rubaai A, Ofoli AR, Burge L, Garuba M (2005) Hardware implementation of an adaptive network-based fuzzy controller for DC–DC converters. IEEE Trans Ind Appl 41(6):1557–1565

    Article  Google Scholar 

  8. Hsu CF, Lin CM, Cheng KH (2006) Supervisory intelligent control system design for forward DC–DC converters. IEE Proc Electr Power Appl 153(5):691–701

    Article  Google Scholar 

  9. Cheng KH, Hsu CF, Lin CM, Lee TT, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536

    Article  Google Scholar 

  10. Hsu CF, Lin CM, Chen TY (2005) Neural-network-identification-based adaptive control of wing rock motion. IEE Proc Control Theory Appl 152(1):65–71

    Article  Google Scholar 

  11. Duarte-Mermoud MA, Suarez AM, Bassi DF (2005) Multivariable predictive control of a pressurized tank using neural networks. Neural Comput Appl 15(1):18–25

    Google Scholar 

  12. Leu YG, Wang WY, Lee TT (2005) Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems. IEEE Trans Neural Netw 16(4):853–861

    Article  Google Scholar 

  13. Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183

    Article  Google Scholar 

  14. Hsu CF (2007) Self-organizing adaptive fuzzy neural control for a class of nonlinear systems. IEEE Trans Neural Netw 18(4):1232–1241

    Article  Google Scholar 

  15. Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Trans Ind Electron 51(1):35–48

    Article  Google Scholar 

  16. Lin CM and Peng YF (2004) Adaptive CMAC-based supervisory control for uncertain nonlinear systems. IEEE Trans Syst Man Cybern B Cybern 34(2):1248–1260

    Article  Google Scholar 

  17. Chen JY, Tsai PS, Wong CC (2005) Adaptive design of a fuzzy cerebellar model arithmetic controller neural network. IEE Proc Control Theory Appl 152(2):133–137

    Article  Google Scholar 

  18. Lin CM, Chen CH (2006) Adaptive RCMAC sliding mode control for uncertain nonlinear systems. Neural Comput Appl 15(1):253–267

    Google Scholar 

  19. Wu TF, Tsai PS, Chang FR, Wang LS (2006) Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation. IEE Proc Control Theory Appl 153(6):647–657

    Article  Google Scholar 

  20. Lane SH, Handelman DA, Gelfand JJ (1992) Theory and development of higher-order CMAC neural networks. IEEE Control Syst Mag 12(2):23–30

    Article  Google Scholar 

  21. Su SF, Lee ZJ, Wang YP (2006) Robust and fast learning for fuzzy cerebellar model articulation controllers. IEEE Trans Syst Man Cybern B Cybern 36(1):203–208

    Article  Google Scholar 

  22. Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  23. Wang WY, Chan ML, Hsu CCJ, Lee TT (2002) H tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Trans Syst Man Cybern B Cybern 32(4):483–492

    Article  Google Scholar 

  24. Lin CM, Peng YF, Hsu CF (2004) Robust cerebellar model articulation controller design for unknown nonlinear systems. IEEE Trans Circuits Syst II 51(7):354–358

    Article  Google Scholar 

  25. Lee TS, Lin CH, Lin FJ (2005) An adaptive H controller design for permanent magnet synchronous motor drives. Control Eng Pract 13(4):425–439

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors appreciate the partial financial support from the National Science Council of Republic of China under grant NSC 96-2218-E-216-001. The authors would like to express their gratitude to the Reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CF. Design of intelligent power controller for DC–DC converters using CMAC neural network. Neural Comput & Applic 18, 93–103 (2009). https://doi.org/10.1007/s00521-007-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-007-0161-3

Keywords

Navigation