Skip to main content
Log in

Neurocognitive impairment following proton therapy for paediatric brain tumour: a systematic review of post-therapy assessments

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Background

Proton therapy (PT), frequently utilised to treat paediatric brain tumour (PBT) patients, eliminates exit dose and minimises dose to healthy tissues that theoretically can mitigate treatment-related effects including cognitive deficits. As clinical outcome data are emerging, we aimed to systematically review current evidence of cognitive changes following PT of PBT.

Materials and methods

We searched PubMed and Scopus electronic databases to identify eligible reports on cognitive changes following PT of PBT according to PRISMA guidelines. Reports were extracted for information on demographics and cognitive outcomes. Then, they were systematically reviewed based on three themes: (1) comparison with photon therapy, (2) comparison with baseline cognitive measures, to population normative mean or radiotherapy-naïve PBT patients and (3) effects of dose distribution to cognition.

Results

Thirteen reports (median size (range): 70 (12–144)) were included. Four reports compared the cognitive outcome between PBT patients treated with proton to photon therapy and nine compared with baseline/normative mean/radiotherapy naïve from which two reported the effects of dose distribution. Reports found significantly poorer cognitive outcome among patients treated with photon therapy compared with proton therapy especially in general cognition and working memory. Craniospinal irradiation (CSI) was consistently associated with poorer cognitive outcome while focal therapy was associated with minor cognitive change/difference. In limited reports available, higher doses to the hippocampus and temporal lobes were implicated to larger cognitive change.

Conclusion

Available evidence suggests that PT causes less cognitive deficits compared with photon therapy. Children who underwent focal therapy with proton were consistently shown to have low risk of cognitive deficit suggesting the need for future studies to separate them from CSI. Evidence on the effect of dose distribution to cognition in PT is yet to mature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

PT:

Proton therapy

PBT:

Paediatric brain tumour

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

CSI:

Craniospinal irradiation

WISC:

Wechsler Intelligence Scale for Children

References

  1. Palmer SL (2008) Neurodevelopmental impact on children treated for medulloblastoma: a review and proposed conceptual model. Dev Disabil Res Rev 14(3):203–210. https://doi.org/10.1002/ddrr.32

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stavinoha P, Askins M, Powell S, Pillay Smiley N, Robert R (2018) Neurocognitive and psychosocial outcomes in pediatric brain tumor survivors. Bioengineering 5(3). https://doi.org/10.3390/bioengineering5030073

  3. Ventura LM, Grieco JA, Evans CL, Kuhlthau KA, MacDonald SM, Tarbell NJ et al (2017) Executive functioning, academic skills, and quality of life in pediatric patients with brain tumors post-proton radiation therapy. J Neuro-Oncol 137(1):119–126. https://doi.org/10.1007/s11060-017-2703-6

    Article  Google Scholar 

  4. Schulte F, Kunin-Batson AS, Olson-Bullis BA, Banerjee P, Hocking MC, Janzen L, Kahalley LS, Wroot H, Forbes C, Krull KR (2019) Social attainment in survivors of pediatric central nervous system tumors: a systematic review and meta-analysis from the Children’s Oncology Group. J Cancer Surviv 13(6):921–931. https://doi.org/10.1007/s11764-019-00808-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saatci D, Thomas A, Botting B, Sutcliffe AG (2019) Educational attainment in childhood cancer survivors: a meta-analysis. Arch Dis Child 105:339–346. https://doi.org/10.1136/archdischild-2019-317594

    Article  PubMed  Google Scholar 

  6. Merchant TE, Kiehna EN, Li C, Xiong X, Mulhern RK (2005) Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma. Int J Radiat Oncol Biol Phys 63(5):1546–1554. https://doi.org/10.1016/j.ijrobp.2005.05.028

    Article  PubMed  Google Scholar 

  7. Raghubar KP, Lamba M, Cecil KM, Yeates KO, Mahone EM, Limke C, Grosshans D, Beckwith TJ, Ris MD (2018) Dose-volume metrics and their relation to memory performance in pediatric brain tumor patients: a preliminary study. Pediatr Blood Cancer 65(9):e27245. https://doi.org/10.1002/pbc.27245

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boehling NS, Grosshans DR, Bluett JB, Palmer MT, Song X, Amos RA et al (2012) Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys 82(2):643–652. https://doi.org/10.1016/j.ijrobp.2010.11.027

    Article  PubMed  Google Scholar 

  9. Harrabi SB, Bougatf N, Mohr A, Haberer T, Herfarth K, Combs SE, Debus J, Adeberg S (2016) Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol 192(11):759–769. https://doi.org/10.1007/s00066-016-1005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carbonara R, Di Rito A, Monti A, Rubini G, Sardaro A (2019) Proton versus photon radiotherapy for pediatric central nervous system malignancies: a systematic review and meta-analysis of dosimetric comparison studies. J Oncol 2019:1–17. https://doi.org/10.1155/2019/5879723

    Article  Google Scholar 

  11. Stokkevåg CH, Indelicato DJ, Herfarth K, Magelssen H, Evensen ME, Ugland M, Nordberg T, Nystad TA, Hægeland C, Alsaker MD, Ulven K, Dale JE, Engeseth GM, Boer CG, Toussaint L, Kornerup JS, Pettersen HES, Brydøy M, Brandal P, Muren LP (2019) Normal tissue complication probability models in plan evaluation of children with brain tumors referred to proton therapy. Acta Oncol 58(10):1416–1422. https://doi.org/10.1080/0284186x.2019.1643496

    Article  CAS  PubMed  Google Scholar 

  12. Merchant TE, C-h H, Shukla H, Ying X, Nill S, Oelfke U (2008) Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer 51(1):110–117. https://doi.org/10.1002/pbc.21530

    Article  PubMed  Google Scholar 

  13. Goitein M, Jermann M (2003) The relative costs of proton and X-ray radiation therapy. Clin Oncol 15(1):S37–S50. https://doi.org/10.1053/clon.2002.0174

    Article  CAS  Google Scholar 

  14. Trajman A, Yahya N, Sukiman NK, Suhaimi NA, Azmi NA, Manan HA (2019) How many roads must a Malaysian walk down? Mapping the accessibility of radiotherapy facilities in Malaysia. PLoS One 14(3). https://doi.org/10.1371/journal.pone.0213583

  15. Yahya N, Roslan N (2018) Estimating radiotherapy demands in South East Asia countries in 2025 and 2035 using evidence-based optimal radiotherapy fractions. Asia Pac J Clin Oncol 14(5):e543–e5e7. https://doi.org/10.1111/ajco.12831

    Article  PubMed  Google Scholar 

  16. Weber DC, Habrand JL, Hoppe BS, Hill Kayser C, Laack NN, Langendijk JA, MacDonald SM, McGovern SL, Pater L, Perentesis JP, Thariat J, Timmerman B, Yock TI, Mahajan A (2018) Proton therapy for pediatric malignancies: fact, figures and costs. A joint consensus statement from the pediatric subcommittee of PTCOG, PROS and EPTN. Radiother Oncol 128(1):44–55. https://doi.org/10.1016/j.radonc.2018.05.020

    Article  PubMed  Google Scholar 

  17. Huynh M, Marcu LG, Giles E, Short M, Matthews D, Bezak E (2019) Are further studies needed to justify the use of proton therapy for paediatric cancers of the central nervous system? A review of current evidence. Radiother Oncol 133:140–148. https://doi.org/10.1016/j.radonc.2019.01.009

    Article  PubMed  Google Scholar 

  18. Toussaint L, Indelicato DJ, Muren LP, Li Z, Lassen-Ramshad Y, Kirby K, Pedro C, Mikkelsen R, di Pinto M, Høyer M, Stokkevåg CH (2020) Temporal lobe sparing radiotherapy with photons or protons for cognitive function preservation in paediatric craniopharyngioma. Radiother Oncol 142:140–146. https://doi.org/10.1016/j.radonc.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  19. Gutierrez A, Rompokos V, Li K, Gillies C, D’Souza D, Solda F, Fersht N, Chang YC, Royle G, Amos RA, Underwood T (2019) The impact of proton LET/RBE modeling and robustness analysis on base-of-skull and pediatric craniopharyngioma proton plans relative to VMAT. Acta Oncol 58(12):1765–1774. https://doi.org/10.1080/0284186x.2019.1653496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yahya N, Chua X-J, Manan HA, Ismail F (2018) Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies. Strahlenther Onkol 194(8):780–786. https://doi.org/10.1007/s00066-018-1303-5

    Article  PubMed  Google Scholar 

  22. Nattabi HA, Sharif NM, Yahya N, Ahmad R, Mohamad M, Zaki FM, Yusoff AN (2017) Is diagnostic performance of quantitative 2D-shear wave elastography optimal for clinical classification of benign and malignant thyroid nodules? Acad Radiol. https://doi.org/10.1016/j.acra.2017.09.002

  23. Pulsifer MB, Sethi RV, Kuhlthau KA, MacDonald SM, Tarbell NJ, Yock TI (2015) Early cognitive outcomes following proton radiation in pediatric patients with brain and central nervous system tumors. Int J Radiat Oncol Biol Phys 93(2):400–407. https://doi.org/10.1016/j.ijrobp.2015.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pulsifer MB, Duncanson H, Grieco J, Evans C, Tseretopoulos ID, MacDonald S et al (2018) Cognitive and adaptive outcomes after proton radiation for pediatric patients with brain tumors. Int J Radiat Oncol Biol Phys 102(2):391–398. https://doi.org/10.1016/j.ijrobp.2018.05.069

    Article  PubMed  Google Scholar 

  25. Peterson RK, Katzenstein JM (2018) Working memory and processing speed among pediatric brain tumor patients treated with photon or proton beam radiation therapy. Child Health Care 48(2):131–141. https://doi.org/10.1080/02739615.2018.1510330

    Article  Google Scholar 

  26. Greenberger BA, Pulsifer MB, Ebb DH, MacDonald SM, Jones RM, Butler WE et al (2014) Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int J Radiat Oncol Biol Phys 89(5):1060–1068. https://doi.org/10.1016/j.ijrobp.2014.04.053

    Article  PubMed  Google Scholar 

  27. Gross JP, Powell S, Zelko F, Hartsell W, Goldman S, Fangusaro J, Lulla RR, Smiley NP, Chang JHC, Gondi V (2019) Improved neuropsychological outcomes following proton therapy relative to x-ray therapy for pediatric brain tumor patients. Neuro Oncol 21:934–943. https://doi.org/10.1093/neuonc/noz070

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zureick AH, Evans CL, Niemierko A, Grieco JA, Nichols AJ, Fullerton BC, Hess CB, Goebel CP, Gallotto SL, Weyman EA, Gaudet DE, Nartowicz JA, Ebb DH, Jones RM, MacDonald SM, Tarbell NJ, Yock TI, Pulsifer MB (2018) Left hippocampal dosimetry correlates with visual and verbal memory outcomes in survivors of pediatric brain tumors. Cancer. 124(10):2238–2245. https://doi.org/10.1002/cncr.31143

    Article  PubMed  Google Scholar 

  29. Park Y, Yu E-S, Ha B, Park H-J, Kim J-H, Kim J-Y (2017) Neurocognitive and psychological functioning of children with an intracranial germ cell tumor. Cancer Res Treat 49(4):960–969. https://doi.org/10.4143/crt.2016.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kahalley LS, Douglas Ris M, Mahajan A, Fatih Okcu M, Chintagumpala M, Paulino AC et al (2019) Prospective, longitudinal comparison of neurocognitive change in pediatric brain tumor patients treated with proton radiotherapy versus surgery only. Neuro-Oncology 21(6):809–818. https://doi.org/10.1093/neuonc/noz041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kahalley LS, Ris MD, Grosshans DR, Okcu MF, Paulino AC, Chintagumpala M et al (2016) Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J Clin Oncol 34(10):1043–1049. https://doi.org/10.1200/JCO.2015.62.1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonini TN, Ris MD, Grosshans DR, Mahajan A, Okcu MF, Chintagumpala M et al (2017) Attention, processing speed, and executive functioning in pediatric brain tumor survivors treated with proton beam radiation therapy. Radiother Oncol 124(1):89–97. https://doi.org/10.1016/j.radonc.2017.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Macdonald SM, Sethi R, Lavally B, Yeap BY, Marcus KJ, Caruso P et al (2013) Proton radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 70 patients. Neuro-Oncology 15(11):1552–1559. https://doi.org/10.1093/neuonc/not121

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yock TI, Yeap BY, Ebb DH, Weyman E, Eaton BR, Sherry NA, Jones RM, MacDonald SM, Pulsifer MB, Lavally B, Abrams AN, Huang MS, Marcus KJ, Tarbell NJ (2016) Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol 17(3):287–298. https://doi.org/10.1016/S1470-2045(15)00167-9

    Article  PubMed  Google Scholar 

  35. Kahalley LS, Peterson R, Ris MD, Janzen L, Okcu MF, Grosshans DR, Ramaswamy V, Paulino AC, Hodgson D, Mahajan A, Tsang DS, Laperriere N, Whitehead WE, Dauser RC, Taylor MD, Conklin HM, Chintagumpala M, Bouffet E, Mabbott D (2020) Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J Clin Oncol 38(5):454–461. https://doi.org/10.1200/jco.19.01706

    Article  PubMed  Google Scholar 

  36. Kim MS, Park SH, Park ES, Park JB, Kwon SC, Lyo IU, Sim HB (2018) Quantitative analysis in peritumoral volumes of brain metastases treated with stereotactic radiotherapy. J Neuroradiol 45(5):310–315. https://doi.org/10.1016/j.neurad.2017.12.022

    Article  PubMed  Google Scholar 

  37. Yock TI, Bhat S, Szymonifka J, Yeap BY, Delahaye J, Donaldson SS et al (2014) Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiother Oncol 113(1):89–94. https://doi.org/10.1016/j.radonc.2014.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roth AK, Ris MD, Orobio J, Xue J, Mahajan A, Paulino AC, Grosshans D, Okcu MF, Chintagumpala M, Kahalley LS (2019) Cognitive mediators of adaptive functioning outcomes in survivors of pediatric brain tumors treated with proton radiotherapy. Pediatr Blood Cancer 67(2). https://doi.org/10.1002/pbc.28064

  39. Delis DC, Kramer JH, Kaplan E, Holdnack J (2004) Reliability and validity of the Delis-Kaplan executive function system: an update. J Int Neuropsychol Soc 10(2):301–303. https://doi.org/10.1017/s1355617704102191

    Article  PubMed  Google Scholar 

  40. Irestorm E, Perrin S, Tonning Olsson I (2018) Pretreatment cognition in patients diagnosed with pediatric brain tumors. Pediatr Neurol 79:28–33. https://doi.org/10.1016/j.pediatrneurol.2017.11.008

    Article  PubMed  Google Scholar 

  41. Ris MD, Grosch M, Fletcher JM, Metah P, Kahalley LS (2016) Measurement of neurodevelopmental changes in children treated with radiation for brain tumors: what is a true ‘baseline?’. Clin Neuropsychol 31(2):307–328. https://doi.org/10.1080/13854046.2016.1216070

    Article  PubMed  Google Scholar 

  42. Fernandes HA, Richard NM, Edelstein K (2019) Cognitive rehabilitation for cancer-related cognitive dysfunction: a systematic review. Support Care Cancer 27(9):3253–3279. https://doi.org/10.1007/s00520-019-04866-2

    Article  PubMed  Google Scholar 

  43. Langendijk JA, Boersma LJ, Rasch CRN, van Vulpen M, Reitsma JB, van der Schaaf A, Schuit E (2018) Clinical trial strategies to compare protons with photons. Semin Radiat Oncol 28(2):79–87. https://doi.org/10.1016/j.semradonc.2017.11.008

    Article  PubMed  Google Scholar 

  44. Eaton BR, Esiashvili N, Kim S, Patterson B, Weyman EA, Thornton LT, Mazewski C, MacDonald TJ, Ebb D, MacDonald SM, Tarbell NJ, Yock TI (2016) Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro-Oncology. 18(6):881–887. https://doi.org/10.1093/neuonc/nov302

    Article  CAS  PubMed  Google Scholar 

  45. Zhang R, Howell RM, Taddei PJ, Giebeler A, Mahajan A, Newhauser WD (2014) A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother Oncol 113(1):84–88. https://doi.org/10.1016/j.radonc.2014.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE et al (2010) Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3):S20–SS7. https://doi.org/10.1016/j.ijrobp.2009.02.091

    Article  PubMed  PubMed Central  Google Scholar 

  47. Merchant TE, Kiehna EN, Li C, Shukla H, Sengupta S, Xiong X et al (2006) Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int J Radiat Oncol Biol Phys 65(1):210–221. https://doi.org/10.1016/j.ijrobp.2005.10.038

    Article  PubMed  Google Scholar 

  48. Doger de Speville E, Robert C, Perez-Guevara M, Grigis A, Bolle S, Pinaud C, Dufour C, Beaudré A, Kieffer V, Longaud A, Grill J, Valteau-Couanet D, Deutsch E, Lefkopoulos D, Chiron C, Hertz-Pannier L, Noulhiane M (2017) Relationships between regional radiation doses and cognitive decline in children treated with cranio-spinal irradiation for posterior fossa tumors. Front Oncol 7. https://doi.org/10.3389/fonc.2017.00166

  49. Toussaint L, Indelicato DJ, Stokkevåg CH, Lassen-Ramshad Y, Pedro C, Mikkelsen R, di Pinto M, Li Z, Flampouri S, Vestergaard A, Petersen JBB, Schrøder H, Høyer M, Muren LP (2019) Radiation doses to brain substructures associated with cognition in radiotherapy of pediatric brain tumors. Acta Oncol 58(10):1457–1462. https://doi.org/10.1080/0284186x.2019.1629014

    Article  PubMed  Google Scholar 

  50. Yahya N, Manan HA (2019) Utilisation of diffusion tensor imaging in intracranial radiotherapy and radiosurgery planning for white matter dose optimization: a systematic review. World Neurosurg 130:e188–ee98. https://doi.org/10.1016/j.wneu.2019.06.027

    Article  PubMed  Google Scholar 

  51. Constine LS, Ronckers CM, Hua CH, Olch A, Kremer LCM, Jackson A, Bentzen SM (2019) Pediatric normal tissue effects in the clinic (PENTEC): an international collaboration to analyse normal tissue radiation dose–volume response relationships for paediatric cancer patients. Clin Oncol 31(3):199–207. https://doi.org/10.1016/j.clon.2019.01.002

    Article  CAS  Google Scholar 

Download references

Funding

National University of Malaysia, GGPM-2017-095 (ukm.edu.my) to NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorazrul Yahya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, N., Manan, H.A. Neurocognitive impairment following proton therapy for paediatric brain tumour: a systematic review of post-therapy assessments. Support Care Cancer 29, 3035–3047 (2021). https://doi.org/10.1007/s00520-020-05808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-020-05808-z

Keywords

Navigation