Skip to main content

Advertisement

Log in

A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A hierarchical hybrid model of parallel metaheuristics is proposed, combining an evolutionary algorithm and an adaptive simulated annealing. The algorithms are executed inside a grid environment with different parallelization strategies: the synchronous multi-start model, parallel evaluation of different solutions and an insular model with asynchronous migrations. Furthermore, a conjugated gradient local search method is employed at different stages of the exploration process. The algorithms were evaluated using the protein structure prediction problem, having as benchmarks the tryptophan-cage protein (Brookhaven Protein Data Bank ID: 1L2Y), the tryptophan-zipper protein (PDB ID: 1LE1) and the α-Cyclodextrin complex. Experimentations were performed on a nation-wide grid infrastructure, over six distinct administrative domains and gathering nearly 1,000 CPUs. The complexity of the protein structure prediction problem remains prohibitive as far as large proteins are concerned, making the use of parallel computing on the computational grid essential for its efficient resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alba E, Luque G, Talbi E-G, Melab N (2005) Metaheuristics and parallelism. In: Alba E (ed) Parellel metaheuristics: a new class of algorithms, Chap. 4. Wiley Series on Parallel and Distributed Computing. Wiley, New Jersey, pp 79–104. ISBN 0-471-67806-6

  • Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27: 1208

    Article  Google Scholar 

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics I: General method. J Chem Phys 31: 459

    Article  MathSciNet  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer E, Bryce MD, Rogers JR, Kennard O, Shikanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542

    Article  Google Scholar 

  • Bolze R, Cappello F, Caron E, Dayde M, Desprez F, Jeannot E, Jegou Y, Lanteri S, Leduc J, Melab N, Mornet G, Namyst R, Primet P, Quetier B, Richard O, Talbi E-G, Touche I (2006) Grid’5000: a large scale and highly reconfigurable experimental grid testbed. Int J High Performance Comput Appl 20(4): 481–494

    Article  Google Scholar 

  • Bonneau R, Tsui J, Ruczinski I, Chivian D, Strauss CME, Baker D (2001) Rosetta in CASP4: progress in ab-initio protein structure prediction. Proteins 45: 119–126

    Article  Google Scholar 

  • Calland P-Y (2003) On the structural complexity of a protein. Protein Eng 16(2): 79–86

    Article  Google Scholar 

  • Cahon S, Melab N, Talbi E-G (2004) ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J Heuristics 10: 357–380

    Article  Google Scholar 

  • Cahon S, Melab N, Talbi E-G (2005) An enabling framework for parallel optimization on the computational grid. In: Proceedings of 5th IEEE/ACM international symposium on cluster computing and the grid (CCGRID’2005), Cardiff, 9–12 May

  • Crescenzi P, Goldman D, Papadimitriou CH, Piccolboni A, Yannakakis M (1998) On the complexity of protein folding. J Comput Biol 5(3): 423–466

    Article  Google Scholar 

  • Dorsett H, White A (2000) Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials. Department of Defense, Weapons Systems Division, Aeronautical and Maritime Research Laboratory, DSTO-GD-0253, Salisbury South Australia, September

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Ingber L (1993a) Adaptive simulated annealing (ASA), global optimization C-code, Caltech Alumni Association

  • Ingber L (1993b) Simulated annealing: practice versus theory. Math Comput Model 11(18): 29–57

    Article  MathSciNet  Google Scholar 

  • Ingber L (1996) Adaptive simulated annealing (ASA): lessons learned. Control Cybern 25(1): 33–54

    MATH  Google Scholar 

  • Ingber L (2001) Adaptive Simulated Annealing (ASA) and Path- Integral (PATHINT) algorithms: generic tools for complex systems, ASA-PATHINT Lecture Plates, Lester Ingber Research

  • Ingber L, Rosen B (1993) Genetic algorithms and very fast simulated reannealing: A comparison. Oper Res Manage Sci 5(33): 523

    Google Scholar 

  • Islas AL, Schober CM (2003) Multi-symplectic integration methods for generalized Schrödinger equations. Future Generation Comput Syst 19: 403–413

    Article  Google Scholar 

  • Kikuchi H, Kalia RK, Nakano A, Vashishta P, Iyetomi H, Ogata S, Kouno T, Shimojo F, Tsuruta K, Saini S (2002) Collaborative simulation grid: multiscale quantum-mechanical/classical atomistic simulations on distributed PC clusters in the US and Japan. IEEE, New York

  • Krasnogor N, Hart W, Smith J, Pelta D (1999) Protein structure prediction problem with evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598): 671–680

    Article  MathSciNet  Google Scholar 

  • Lattman EE (2001) CASP. Proteins 4(44): 399

    Article  Google Scholar 

  • Levinthal C (1969) Mossbauer spectroscopy in biological systems. In: DeBrunner JTP, Munck E (eds) Proc. How to Fold Graciously). University of Illinois Press, proceedings of a meeting held at Allerton House, Monticello, pp 22–24

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature (Lond.) 267(5612): 585–590

    Article  Google Scholar 

  • Melab N, Cahon S, Talbi E-G (2006) Grid computing for parallel bioinspired algorithms. J Parallel Distrib Comput (JPDC) 66(8): 1052–1061

    Article  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6): 1087–1092. doi:10.1063/1.1699114

    Article  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1999) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639–1662

    Article  Google Scholar 

  • Moore BE, Reich S (2003) Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Syst 19: 395–402

    Article  Google Scholar 

  • Nakano A, Kalia RK, Vashishta P, Campbell TJ, Ogata S, Shimojo F, Saini S (2001) Scalable atomistic simulation algorithms for materials research. SC2001 November 2001, Denver (c) 2001. ACM, New York

  • Neumaier A (1997) Molecular modelling of proteins and mathematical prediction of protein structure. SIAM Rev 39: 407–460

    Article  MATH  MathSciNet  Google Scholar 

  • Ngo JT, Marks J (1992) Computational Complexity of a Problem in Molecular-Structure Prediction. Protein Eng 5(4): 313–321

    Article  Google Scholar 

  • Pant A, Jafri H (2004) Communicating efficiently on cluster based grids with MPICH-VMI. In: 2004 IEEE International Conference on Cluster Computing (CLUSTER’04), pp 23–33

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612

    Article  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66: 27–85

    Article  Google Scholar 

  • Rabow A, Scheraga H (1996) Protein. Science 5: 1800–1815

    Google Scholar 

  • Sherwood P (2000) Hybrid quantum mechanics/molecular mechanics approaches, modern methods and algorithms of quantum chemistry, proceedings, 2nd edn. In: Grotendorst J (ed) John von Neumann Institute for Computing, Jülich, NIC Series, vol 3. ISBN 3-00-005834-6, pp 285–305

  • Tantar A-A, Melab N, Talbi E-G, Toursel B (2006) Solving the protein folding problem with a bicriterion genetic algorithm on the grid. CCGRID, Vol. 2, ISBN 0-7695-2585-7, 43, 2006

  • Tantar A-A, Melab N, Talbi E-G, Parent B, Horvath D (2007) A parallel hybrid genetic algorithm for protein structure prediction on the computational grid. Future Generation Comput Syst 23: 398–409

    Article  Google Scholar 

  • Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8: 541–564

    Article  Google Scholar 

  • Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72: 57–73

    Article  Google Scholar 

  • Vande Waterbeemd H, Carter RE, Grassy G, Kubinyi H, Martin YC, Tute MS, Willett P (1997) Glossary of terms used in computational drug design. Pure Appl Chem 69(5): 1137–1152

    Article  Google Scholar 

  • Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. Wiley Periodicals Inc. J Comput Chem 24: 760–769

    Article  Google Scholar 

  • Westhead DR, Clark DE, Murray CW (1997) A comparison of heuristic search algorithms for molecular docking. J Comput Aided Molec Des 11: 209–228

    Article  Google Scholar 

  • White A, Zerilli FJ, Jones HD (2000) Ab initio calculation of intermolecular potential parameters for gaseous decomposition products of energetic materials. Department of Defense, Energetic Materials Research and Technology Department, Naval Surface Warfare Center, DSTO-TR-1016, Melbourne Victoria 3001 Australia, August

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru-Adrian Tantar.

Additional information

The current article is developed within the context of the DOCK—Conformational Sampling and Docking on Grids project, sustained by ANR (Agence Nationale de la Recherche, http://www.gip-anr.fr). The project is a joint work between LIFL (USTL-CNRS-INRIA), IBL (CNRS-INSERM) and CEA DSV/DRDC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tantar, AA., Melab, N. & Talbi, EG. A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction. Soft Comput 12, 1185–1198 (2008). https://doi.org/10.1007/s00500-008-0298-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0298-8

Keywords

Navigation