Skip to main content
Log in

Numerical construction of LISS Lyapunov functions under a small-gain condition

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. The set of such decay points plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system, and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone operator. For this purpose we use a fixed-point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage over an earlier algorithm is demonstrated. Furthermore, an example is given which shows how to analyze a given perturbed interconnected system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge C (1997) Topological spaces. Dover, Mineola

    Google Scholar 

  2. Bourlès H (2000) Addendum to: “w-stability and local input-output stability results”. IEEE Trans Autom Control 45(6): 1220–1221

    Article  MATH  Google Scholar 

  3. Bourlès H, Colledani F (1995) w-stability and local input-output stability results. IEEE Trans Autom Control 40(6): 1102–1108

    Article  MATH  Google Scholar 

  4. Dashkovskiy SN, Ito H, Wirth FR (2011) On a small gain theorem for ISS networks in dissipative Lyapunov form. Eur J Control 17(4): 357–365

    Article  MathSciNet  MATH  Google Scholar 

  5. Dashkovskiy SN, Kosmykov M, Wirth FR (2011) A small gain condition for interconnections of ISS systems with mixed ISS characterizations. IEEE Trans Autom Control 56(6): 1247–1258

    Article  MathSciNet  Google Scholar 

  6. Dashkovskiy SN, Rüffer BS (2010) Local ISS of large-scale interconnections and estimates for stability regions. Syst Control Lett 59(3–4): 241–247

    Article  MATH  Google Scholar 

  7. Dashkovskiy SN, Rüffer BS, Wirth FR (2007) An ISS small gain theorem for general networks. Math Control Signals Syst 19: 93–122

    Article  MATH  Google Scholar 

  8. Dashkovskiy SN, Rüffer BS, Wirth FR (2010) Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J Control Optim 48: 4089–4118

    Article  MathSciNet  MATH  Google Scholar 

  9. Eaves BC (1972) Homotopies for computation of fixed points. Math Program 3: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans LC (1998) Partial differential equations. In: Graduate studies in mathematics, vol 19. American Mathematical Society, Providence

  11. Geiselhart R (2010) Homotopy algorithms and the numerical construction of ISS Lyapunov functions. Master’s thesis, Universität Würzburg, Germany

  12. Ito H, Jiang ZP (2009) Necessary and sufficient small gain conditions for integral input-to-state stable systems: a Lyapunov perspective. IEEE Trans Autom Control 54(10): 2389–2404

    Article  MathSciNet  Google Scholar 

  13. Jiang ZP, Lin Y, Wang Y (2004) Nonlinear small-gain theorems for discrete-time feedback systems and applications. Automatica 40(12): 2129–2136

    MathSciNet  MATH  Google Scholar 

  14. Jiang ZP, Mareels IMY, Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Autom J IFAC 32(8): 1211–1215

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang ZP, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7(2): 95–120

    Article  MathSciNet  MATH  Google Scholar 

  16. Karafyllis I, Jiang ZP (2010) New results in trajectory-based small-gain with application to the stabilization of a chemostat. Int J Robust Nonlinear Cotrol. doi:10.1002/rnc.1773

  17. Karafyllis I, Jiang ZP (2011) A vector small-gain theorem for general non-linear control systems. IMA J Math Control Inf 28(3): 309–344

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu T, Hill DJ, Jiang ZP (2009) Lyapunov formulation of ISS small-gain in dynamical networks. In: Proceedings of 48th IEEE CDC/28th CCC 2009, pp 4204–4209, Shanghai, China

  19. Merrill OH (1972) Applications and extensions of an algorithm that computes fixed points of certain upper semi-continuous point to set mappings. PhD thesis, University of Michigan, East Lansing

  20. Moylan P, Hill D (1978) Stability criteria for large-scale systems. IEEE Trans Autom Control 23(2): 143–149

    Article  MathSciNet  MATH  Google Scholar 

  21. Rüffer BS (2010) Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space. Positivity 14(2): 257–283

    Article  MathSciNet  MATH  Google Scholar 

  22. Rüffer BS (2010) Small-gain conditions and the comparison principle. IEEE Trans Autom Control 55(7): 1732–1736

    Article  Google Scholar 

  23. Rüffer BS, Dower PM, Ito H (2010) Applicable comparison principles in large-scale system analysis. In: Proceedings of the 10th SICE annual conference on control systems. Kumamoto, Japan

  24. Rüffer BS, Wirth FR (2011) Stability verification for monotone systems using homotopy algorithms. Numer Algorithms 58:529–543

    Google Scholar 

  25. Saigal R (1977) On the convergence rate of algorithms for solving equations that are based on methods of complementary pivoting. Math Oper Res 2: 108–124

    Article  MathSciNet  MATH  Google Scholar 

  26. Šiljak DD (1979) Large-scale dynamic systems. In: North-Holland series in system science and engineering, vol 3. North-Holland, New York

  27. Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. In: Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence

  28. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Automat Control 34(4): 435–443

    Article  MathSciNet  MATH  Google Scholar 

  29. Sontag ED, Wang Y (1995) On characterizations of the input-to-state stability property. Syst Control Lett 24(5): 351–359

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1: 146–160

    Article  MathSciNet  MATH  Google Scholar 

  31. Vanderbei RJ (1996) Linear programming—foundations and extensions. Kluwer, Boston

    MATH  Google Scholar 

  32. Vidyasagar M (1981) Input-output analysis of large-scale interconnected systems. In: Lecture notes in control and information sciences, vol 29. Springer, Berlin

  33. Yang Z (1999) Computing equilibria and fixed points. Kluwer, Boston Dordrecht London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Geiselhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiselhart, R., Wirth, F. Numerical construction of LISS Lyapunov functions under a small-gain condition. Math. Control Signals Syst. 24, 3–32 (2012). https://doi.org/10.1007/s00498-012-0082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0082-2

Keywords

Navigation