Skip to main content
Log in

A functional study of stylar hydroxyproline-rich glycoproteins during pollen tube growth

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A–C.
Fig. 5A, B.
Fig. 6A, B.
Fig. 7A–E.
Fig. 8.
Fig. 9A–C.

Similar content being viewed by others

References

  • Atkinson AH, Lind JL, Clarke AE, Anderson MA (1994) Molecular and structural features of the pistil of Nicotiana alata. Biochem Soc Symp 60:15–26

    CAS  PubMed  Google Scholar 

  • Baldwin TC, McCann MC, Roberts K (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota: purification and partial characterization. Plant Physiol 103:115–123

    CAS  PubMed  Google Scholar 

  • Bosch M, Sommer Knudsen J, Derksen J, Mariani C (2001) Class III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiol 125:2180–2188

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Mau S, Clarke AE (1993) Nucleotide sequence and style-specific expression of a novel proline-rich protein from Nicotiana alata. Plant Mol Biol 21:391–395

    CAS  PubMed  Google Scholar 

  • Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98

    CAS  Google Scholar 

  • Cheung AY, May B, Kawata EE, Gu Q, Wu HM (1993) Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tobacco. Plant J 3:151–160

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wang H, Wu H (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    CAS  PubMed  Google Scholar 

  • Cheung AY, Zhan X, Wang H, Wu H (1996) Organ-specific and agamous-regulated expression and glycosylation of a pollen tube growth-promoting protein. Proc Natl Acad Sci USA 93:3853–3858

    Article  CAS  PubMed  Google Scholar 

  • Edge ASB, Faltynek CR, Hof L, Reichert LE Jr, Weber P (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem 118:131–137

    CAS  PubMed  Google Scholar 

  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis, and function. Annu Rev Plant Physiol 34:47–70

    CAS  Google Scholar 

  • Frankis R, Mascarenhas JP (1980) Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann Bot 45:595–599

    CAS  Google Scholar 

  • Gleeson PA, Clarke AE (1979) Structural studies on the arabinogalactan-protein from the stylar canal of Gladiolus gandavensis. Biochem J 181:607–621

    CAS  PubMed  Google Scholar 

  • Goldberg RB (1988) Plants: novel developmental processes. Science 240:1460–1467

    CAS  PubMed  Google Scholar 

  • Goldberg RB, Hoshek G, Tam SH, Ditta GS, Breidenbach RW (1981) Abundance, diversity, and regulation of mRNA sequence sets in soybean embryogenesis. Dev Biol 83:201–217

    CAS  PubMed  Google Scholar 

  • Goldman MHS, Pezzotti M, Seurinck J, Mariani C (1992) Developmental expression of tobacco pistil-specific genes encoding novel extensin-like proteins. Plant Cell 4:1041–1051

    CAS  PubMed  Google Scholar 

  • Graaf BHJ de (2000) Pistil proline-rich proteins in Nicotiana tabacum, their involvement in pollen-pistil interaction. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands

  • Graaf BHJ de, Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55

    Article  Google Scholar 

  • Graaf BHJ de, Knuiman BA, Derksen J, Mariani C (2003) Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot 54:55–63

    Article  PubMed  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78

    Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Higgins DG, Sharp PM (1988) Clustal: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244

    CAS  PubMed  Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Article  PubMed  Google Scholar 

  • Jung J (1956) Sind Narbe und Griffel Eintrittspforten für Pilzinfektionen? Phytopathol Z 27:405–426

    Google Scholar 

  • Kho YO, Baer J (1968) Observing pollen tubes by means of fluorescence. Euphytica 17:298–302

    Google Scholar 

  • Kroh M, Labarca C, Loewus F (1971) Use of pistil exudate for pollen tube wall biosynthesis in Lillium Longiflorum. In: Heslop-Harrison J (ed) Pollen: development and physiology. Butterworths, London, pp 273–278

  • Kuboyama T, Chung CS, Takeda G (1994) The diversity of interspecific pollen-pistil incongruity in Nicotiana. Sex Plant Reprod 7:250–258

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the heads of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lind JL, Bacic A, Clarke AE, Anderson MA (1994) A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J 6:491–502

    Article  CAS  PubMed  Google Scholar 

  • Linskens HF, Esser KL (1957) Über die spezifische Anfärbung der Pollenschläuche im Griffel und die Zahl der Kallosepfropfen nach Selbstbefruchtung und Fremdbefruchtung. Naturwissenschaften 44:1–2

    Google Scholar 

  • Lush WM (1999) Whither chemotropism and pollen tube guidance? Trends Plant Sci 4:413–418

    Google Scholar 

  • Mascarenhas J (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    CAS  Google Scholar 

  • McClure BA, Cruz GF, Beecher B, Sulaman W (2000) Factors affecting inter- and intraspecific pollen rejection in Nicotiana. Ann Bot 85:113–123

    Article  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Read SM, Clarke AE, Bacic A (1993) Stimulation of growth of cultured Nicotiana tabacum W38 pollen tubes by poly (ethylene glycol) and Cu(II) salts. Protoplasma 177:1–14

    CAS  Google Scholar 

  • Rosen WG (1971) Pollen tube growth and fine structure. In: Heslop-Harrison J (eds) Pollen: development and physiology. Butterworths, London, pp 177–185

  • Roy S, Jauh GY, Hepler PK, Lord EM (1998) Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta 204:450–458

    Article  CAS  PubMed  Google Scholar 

  • Sánchez AM (2001) Pollen-pistil interaction in Nicotiana: study of an incongruous cross. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands

  • Schultz CJ, Hauser K, Lind JL, Atkinson AH, Pu ZY, Anderson MA, Clarke AE (1997) Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kDa glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Mol Biol 35:833–845

    Article  CAS  PubMed  Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    CAS  PubMed  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    CAS  PubMed  Google Scholar 

  • Sommer-Knudsen J, Clarke AE, Bacic A (1996) A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata. Plant J 9:71–83

    Article  CAS  PubMed  Google Scholar 

  • Sommer-Knudsen J, Clarke AE, Bacic A (1997) Proline- and hydroxyproline-rich gene products in the sexual tissues of flowers. Sex Plant Reprod 10:253–260

    Article  CAS  Google Scholar 

  • Sommer-Knudsen J, Lush WM, Bacic A, Clarke AE (1998) Re-evaluation of the role of a transmitting tract-specific glycoprotein on pollen tube growth. Plant J 13:529–535

    Article  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    CAS  Google Scholar 

  • Wang H, Wu HM, Cheung AY (1993) Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu HM, Cheung AY (1996) Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J 9:715–727

    Article  CAS  PubMed  Google Scholar 

  • Weterings K, Reijnen W, van Aarssen R, Kortstee A, Spijkers J, van Herpen M, Schrauwen J, Wullems G (1992) Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination. Plant Mol Biol 18:1101–1111

    CAS  PubMed  Google Scholar 

  • Wittink FRA, Knuiman B, Derksen J, Capkova V, Twell D, Schrauwen JAM, Wullems GJ (2000) The pollen-specific gene Ntp303 encodes a 69-kDa glycoprotein associated with the vegetative membranes and the cell wall. Sex Plant Reprod 12:276–284

    CAS  Google Scholar 

  • Wu H, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    CAS  PubMed  Google Scholar 

  • Wu H, Wong E, Ogdahl J, Cheung AY (2000) A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J 22:165–176

    Article  CAS  PubMed  Google Scholar 

  • Yariv J, His H, Katchalski E (1967) Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem J 105:10–20

    Google Scholar 

Download references

Acknowledgements

We gratefully thank Alice Cheung and colleagues of the Department of Biochemistry and Molecular Biology, University of Massachusetts, for providing facilities and hospitality for the pollen tube growth assays. Bruce McClure is thanked for the gift of the 120 kDa-antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Bosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, M., Derksen, J. & Mariani, C. A functional study of stylar hydroxyproline-rich glycoproteins during pollen tube growth. Sex Plant Reprod 16, 87–98 (2003). https://doi.org/10.1007/s00497-003-0179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-003-0179-3

Keywords

Navigation