Skip to main content
Log in

Non-Bipartite K-Common Graphs

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of Kn is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Štovíček and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Burr and V. Rosta: On the Ramsey multiplicities of graphs — problems and recent results, J. Graph Theory 4 (1980), 347–361.

    Article  MathSciNet  Google Scholar 

  2. D. Conlon, J. Fox and B. Sudakov: An approximate version of Sidorenko’s conjecture, Geom. Funct. Anal. 20 (2010), 1354–1366.

    Article  MathSciNet  Google Scholar 

  3. D. Conlon, J. H. Kim, C. Lee and J. Lee: Some advances on Sidorenko’s conjecture, J. Lond. Math. Soc. 98 (2018), 593–608.

    Article  MathSciNet  Google Scholar 

  4. D. Conlon and J. Lee: Finite reflection groups and graph norms, Adv. Math. 315 (2017), 130–165.

    Article  MathSciNet  Google Scholar 

  5. D. Conlon and J. Lee: Sidorenko’s conjecture for blow-ups, Anal. 2021, Paper No. 2.

  6. E. Csóka, T. Hubai and L. Lovász: Locally common graphs (2019), preprint arXiv:1912.02926.

  7. J. Cummings and M. Young: Graphs containing triangles are not 3-common, J. Comb. 2 (2011), 1–14.

    MathSciNet  MATH  Google Scholar 

  8. P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

    Article  MathSciNet  Google Scholar 

  9. P. Erdős: On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 459–464.

    MathSciNet  MATH  Google Scholar 

  10. P. Erdős and M. Simonovits: Cube-supersaturated graphs and related problems, in: Progress in graph theory (Waterloo, Ont., 1982) (1984), 203–218.

  11. J. Fox: There exist graphs with super-exponential ramsey multiplicity constant, Journal of Graph Theory 57 (2008), 89–98.

    Article  MathSciNet  Google Scholar 

  12. J. Fox and F. Wei: On the local approach to Sidorenko’s conjecture, Electronic Notes in Discrete Mathematics 61 (2017), 459–465.

    Article  Google Scholar 

  13. F. Franek: On Erdős’s conjecture on multiplicities of complete subgraphs: lower upper bound for cliques of size 6, Combinatorica 22 (2002), 451–454.

    Article  MathSciNet  Google Scholar 

  14. F. Franek and V. Rödl: 2-colorings of complete graphs with a small number of monochromatic K4 subgraphs, Discrete Math. 114 (1993), 199–203. Combinatorics and algorithms (Jerusalem, 1988).

    Article  MathSciNet  Google Scholar 

  15. A. Frieze and R. Kannan: Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.

    Article  MathSciNet  Google Scholar 

  16. G. Giraud: Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ramsey, J. Combin. Theory Ser. B 27 (1979), 237–253.

    Article  MathSciNet  Google Scholar 

  17. A. W. Goodman: On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778–783.

    Article  MathSciNet  Google Scholar 

  18. H. Hatami: Graph norms and Sidorenko’s conjecture, Israel J. Math. 175 (2010), 125–150.

    Article  MathSciNet  Google Scholar 

  19. H. Hatami, J. Hladký, D. Král, S. Norine and A. Razborov: Non-three-colourable common graphs exist, Combin. Probab. Comput. 21 (2012), 734–742.

    Article  MathSciNet  Google Scholar 

  20. C. Jagger, P. Štovíček and A. Thomason: Multiplicities of subgraphs, Combinatorica 16 (1996), 123–141.

    Article  MathSciNet  Google Scholar 

  21. J. L. Li and B. Szegedy: On the logarithimic calculus and Sidorenko’s conjecture (2011), preprint arXiv:1107.1153, accepted to Combinatorica.

  22. G. Lorden: Blue-empty chromatic graphs, Amer. Math. Monthly 69 (1962), 114–120.

    Article  MathSciNet  Google Scholar 

  23. L. Lovász: Subgraph densities in signed graphons and the local Simonovits-Sidorenko conjecture, Electron. J. Combin. 18 (2011), Paper 127, 21.

  24. L. Lovász: Large networks and graph limits, AMS Colloquium Publications, volume 60, 2012.

  25. L. Lovász and B. Szegedy: Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), 933–957.

    Article  MathSciNet  Google Scholar 

  26. S. Niess: Counting monochromatic copies of K4: a new lower bound for the ramsey multiplicity problem (2012), preprint arXiv:1207.4714.

  27. A. A. Razborov: Flag algebras, J. Symbolic Logic 72 (2007), 1239–1282.

    Article  MathSciNet  Google Scholar 

  28. A. Sidorenko: A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993), 201–204.

    Article  MathSciNet  Google Scholar 

  29. A. Sidorenko: Randomness friendly graphs, Random Structures Algorithms 8 (1996), 229–241.

    Article  MathSciNet  Google Scholar 

  30. A. F. Sidorenko: Cycles in graphs and functional inequalities, Mat. Zametki 46 (1989), 72–79, 104.

    MathSciNet  MATH  Google Scholar 

  31. A. F. Sidorenko: Inequalities for functionals generated by bipartite graphs, Diskret. Mat. 3 (1991), 50–65.

    MATH  Google Scholar 

  32. K. Sperfeld: On the minimal monochromatic K4-density (2011), preprint arXiv:1106.1030.

  33. B. Szegedy: An information theoretic approach to Sidorenko’s conjecture (2015), preprint arXiv:1406.6738.

  34. A. Thomason: A disproof of a conjecture of Erdős in Ramsey theory, J. London Math. Soc. 39 (1989), 246–255.

    Article  MathSciNet  Google Scholar 

  35. A. Thomason: Graph products and monochromatic multiplicities, Combinatorica 17 (1997), 125–134.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank László Miklós Lovász for insightful comments on the graph limit notions discussed in this paper, and the two anonymous reviewers for preparing very detailed reports in an unusually fast way; the comments of the reviewers helped to substantially improve the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Volec.

Additional information

The work of the first, second and fourth authors has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 648509). This publication reflects only its authors’ view; the European Research Council Executive Agency is not responsible for any use that may be made of the information it contains. The first and the fourth author were also supported by the MUNI Award in Science and Humanities of the Grant Agency of Masaryk University. The second author was also supported by the Leverhulme Trust Early Career Fellowship ECF-2018-534. The third author was supported by an NSERC Discovery grant. The fifth author was supported by IAS Founders’ Circle funding provided by Cynthia and Robert Hillas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Král’, D., Noel, J.A., Norin, S. et al. Non-Bipartite K-Common Graphs. Combinatorica 42, 87–114 (2022). https://doi.org/10.1007/s00493-020-4499-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-020-4499-9

Mathematics Subject Classification (2010)

Navigation