Skip to main content
Log in

Investigating the potential of integrated urban greening strategies for reducing outdoor thermal stresses: a case of asymmetrical configuration in the tropical city of Bhopal

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In Indian cities where streets are the only affordable outdoor public space, pedestrians are always exposed to extreme heat related health risk. However, it’s a challenge to reduce heat stress in existing streets characterized by asymmetrical urban configuration. Integrating vegetation without reconstituting the original orientation and geometry is one of the feasible ways to alleviate stress. Therefore, current study focuses to analyse the heat stress reduction potential of urban greenery strategy in asymmetrical urban configuration from spatiotemporal perspective. It initiates with the selection of commercial streets in extreme hot climate with an on-site measurement of its climatic and morphological attributes. Furthermore, it leads to the classification and prioritizing of street's sections linked to hot-spots determined by varied sky view factor and asymmetrical aspect ratio. Finally, an Envi-Met model with iterated scenarios at the building and street levels is developed, incorporating three strategies (trees, grass, green-walls). The impact of heat related health risk is quantified using a thermal index Universal Thermal Climate Index along with air temperature and mean radiant temperature. The results suggested that due to asymmetricity a fixed strategy would not be applicable across the street. The highest reduction was observed by trees in asymmetrical sections while lowest was recorded by green-wall. However, it would be worthwhile to adopt green-wall along with dense tree’s (leaf area density, 0.3) in order to reduce the heat stress in deeper sections. The evidence-based integration of Urban greenery can assist planners and designers in mitigating extreme heat stress in similar complex urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

The authors declare that they this research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kishore Ojha.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, S.K., Mukherjee, M. Investigating the potential of integrated urban greening strategies for reducing outdoor thermal stresses: a case of asymmetrical configuration in the tropical city of Bhopal. Int J Biometeorol (2024). https://doi.org/10.1007/s00484-024-02680-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00484-024-02680-y

Keywords

Navigation