Skip to main content

Advertisement

Log in

Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Pollen allergies have a remarkable clinical impact all over world. Quercus pollen is the main allergen in many parts of world. Due to the health impacts caused by exposure to oak pollen, the objectives of this study are to characterise the aerobiological behaviour of Quercus pollen and to determine its potential sources as well as their transport through the atmosphere of Mexico City and surrounding areas between January 2012 and June 2015. Airborne Quercus pollen monitoring was carried out simultaneously in five zones of Mexico City. The percentage of Quercus pollen of the total pollen collected from the air showed that the highest concentration was recorded in 2014, followed by 2012. The annual seasonal variation indicated that flowering and pollen emission into the atmosphere began between February and March. The maximum concentration of Quercus pollen was reached at Cuajimalpa. In 2012, the amount of pollen grains was distributed in March and April uniformly, whilst in 2014, the largest amount of pollen was concentrated in March. In 2012 and 2014 (years with the highest pollen concentrations), corresponding intraday variations were quite similar, with a low relative maximum in the morning and the highest concentrations in the evening. The largest values were recorded in 2014, and two processes can explain these. In the afternoon, pollen from secondary forest is carried by southwesterly converging winds, increasing the pollen concentration in Cuajimalpa. In the evening, there is an additional pollen contribution from primary forest via transport by NW winds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Article  Google Scholar 

  • Anenberg CS, Weinberger R, Roman H, Neumann J, Crimmins A, Fann N, Martinich J, Kinney P (2017) Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. AGU Publications GeoHealth 1:80–92. https://doi.org/10.1002/2017GH000055

    Article  Google Scholar 

  • Bassett JI, Crompton CW, Parmelee JA.(1978) An Atlas of airborne pollen grains and common fungus spores of Canada. Que ́bec: Supply and Services Canada

  • Bianchi M, Olabuenaga S (2006) A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 22:247–257

    Article  Google Scholar 

  • Bricchi E, Frenguelli G, Mincigrucci G, Fornaciari M, Ferranti F, Romano B (1995) Time linkages between pol- lination onsets of different taxa over an 11-year period in Perugia, Central Italy. Aerobiologia 11:57–61

    Article  Google Scholar 

  • Bronillet-Tarragó I (1992) Estudio aeropolínico de la zona norte de la Ciudad de México en un ciclo anual. Tesis de Licenciatura. Facultad de Ciencias. Universidad Nacional Autónoma de México. México, D. F

  • Calderón C, Lacey J, McCartney A, Rosas I (1997) Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City. Int J Biometeorol 40:71–80

    Article  Google Scholar 

  • Calderón-Ezquerro M, Guerrero-Guerra C, Martínez-López B, Fuentes-Rojas F, Téllez-Unzueta F, López-Espinoza E, Calderón-Segura M, Martínez-Arroyo A, Trigo-Pérez M (2016) First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia 32:225–244

    Article  Google Scholar 

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres, en Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Conabio, México

  • Duso M, Duso L, de Antoni Zoppas B, González M, Barrera R (2007) Airborne pollen calendar of Caxias do Sul (Rio Grande do Sul, Brazil), 2001-2002. Polen 17:51–65

    Google Scholar 

  • Dvorin D, Lee J, Belecanech G, Goldstein M, Dunsky E (2001) A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Ann Allergy Asthma Immunol 87:394–404

    Article  CAS  Google Scholar 

  • Eder W, Markus J, von Mutius E (2006) The asthma epidemic. N Engl J Med 355:2226–2235

    Article  CAS  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy, angiosperms. Stockholm: Almqvist and Wiksell

  • Estrada F, Martínez-Arroyo A, Fernández-Eguiarte A, Luyando E, Gay C (2009) Defining climate zones in Mexico City using multivariate analysis. Atmosfera 22:175–193

    Google Scholar 

  • Fernández-González D, Valencia-Barrera R, Vega A, Díaz de la Guardia C, Trigo M, Cariñanos P, Guardia A, Pertiñez C, Rodríguez-Rajo F (1999) Analysis of grass pollen concentrations in the atmosphere of several spanish sites. Polen 10:123–132

    Google Scholar 

  • Frenguelli G, Bricchi E, Romano B, Mincigrucci G, Ferranti F, Antognozzi E (1992) The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 8:415–418

    Article  Google Scholar 

  • Frías-De León M, Duarte-Escalante E, Calderón-Ezquerro C, Jiménez-Martínez M, Acosta-Altamirano G, Moreno-Eutimio M, Reyes-Montes M (2016) Diversity and characterization of airborne bacteria at two health institutions. Aerobiologia 32:187–198

    Article  Google Scholar 

  • Galán C, Cariñanos P, Alcázar, P, Dominguez-Vilches E (2007) Spanish aerobiology network (REA) management and quality manual. Córdoba: Servicio de Publicaciones Universidad de Córdoba

  • Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in south-West Andalucia, Spain. Int J Biometeorol 45:59–63

    Article  Google Scholar 

  • García-Mozo H, Dominguez-Vilches E, Galán C (2007) Airborne allergenic pollen in a natural áreas Hornachuelos natural park, Córdoba. Southern Spain Ann Agric Environ Med 14:109–110

    Google Scholar 

  • Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385–395. https://doi.org/10.1007/s10453-014-9335-5

    Article  Google Scholar 

  • Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, Fernandez-González D, Frenguelli G, Gehrig R, Isard S, Levetin E, Li DW, Mandrioli P, Rogers CA, Thibaudon M, Sauliene I, Skjoth C, Smith M, Sofiev M (2017) Recommended terminology for aerobiological studies. Aerobiologia 33:293–295. https://doi.org/10.1007/s10453-017-9496-0

    Article  Google Scholar 

  • García-Mozo H, Galán C, Gómez-Casero M, Dominguez-Vilchis E (2000) A comparative study of different temperatura accumulation methods for predicting the start of the Quercus pollen season in Cordoba (south West Spain). Grana 39:194–199

    Article  Google Scholar 

  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez M, Aira M, Roure J, Ruiz L, Trigo M, Dominguez-Vilches E (2006a) Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224

    Google Scholar 

  • García-Mozo H, Pérez R, Fernández González F, Galán C (2006b) Airborne pollen sampling in Toledo, Central Spain. Aerobiologia 22:55–66

    Article  Google Scholar 

  • Galán C, Tormo CJ, Infante F, Domínguez E (1991) Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana 30:201–209

    Article  Google Scholar 

  • Gomez-Casero MT, Hidalgp P, García Mozo HF, Domínguez E, Galán C (2004) Pollen biology in four mediterranean Quercus species. Grana 43:1–9

    Article  Google Scholar 

  • Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, Bolívar J, De la Morena BA, Galán C (2011) Determination of potential sources of Quercus airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia 27:261–276

    Article  Google Scholar 

  • INEGI (2005) II conteo de poblacion y vivienda 2005. http://wwwinegiorgmx/est/contenidos/proyectos/ccpv/cpv2005/ Accessed January 2015

  • INEGI (2010) Mapa digital de México. Información de uso de suelo y vegetación. http://gaia.inegi.org.mx/mdm5/viewer. html. Accessed July 2015

  • Jato V, Rodriguez-Rajo F, Aira J (2007) Use of Quercus ilex subsp. ballota phenological and pollen production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105

    Article  Google Scholar 

  • Jáuregui O (1963) Climatología. En Hidrología de la Cuenca del Valle de México. Comisión hidrológica de la cuenca del valle de México. Secretaría de Recursos Hidráulicos. México, D. F

  • Jáuregui E (2000) El clima de la ciudad de México. Instituto de Geografía, UNAM- Plaza y Valdés. México, 131 pp.

  • So HJ, Moon SJ, Hwang SY, Kim JH, Jang HJ, Jo JH, Sung TJ, Lim DH (2017) Characteristics of airborne pollen in Incheon and Seoul (2015–2016). Asia Pac Allergy 7:138–147

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modeling, data assimilation and predictability: United States of America, Cambridge University Press

  • Kapp RO (1969) How to know pollen and spores. WM. In: C: Brown company publishers

    Google Scholar 

  • Köhler W, Schachtel G, Voleske P (2007) Biostatistik Einführung für Biologen und Agrarwissenschaftler. In: Heidelberg: Springer-Verlag Berlin

    Google Scholar 

  • Lacey ME, West JS (2006) The air Spora: a manual for catching and identifying airborne biological particles. Springer, Netherlands

    Book  Google Scholar 

  • Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov M, Solomon F, Storkey J, Vautard R, Epstein MM (2017) Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385–391

    Article  Google Scholar 

  • Linkosalo T, Häkkinen R, Hänninen H (2006) Model of the spring phenology of boreal and temperate trees: is there something missing. Tree Physiol 20:1175–1182

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. 2da edicion. Blackwell Scientific Publications, London

    Google Scholar 

  • Moreno-Grau S, Angosto J, Elvira-Rendueles B, Bayo J, Moreno J, Moreno-Clavel J (2000) Effects of meteorological parameters and plant distribution on Chenopodiaceae-Amaranthaceae, Quercus and Olea airborne pollen concentrations in the atmosphere of Cartagena (Spain). Aerobiologia 16:17–20

    Article  Google Scholar 

  • Pacini E (2008) Pollination. In Jorgensen S, Fath B (eds) Encyclopedia of ecology. 2nd edition. Elsevier 2857 – 2861pp

  • Parrado ZG, Barrera R, Rodriguez C, Maray A, Romero R, Fraile R, Gonzalez D (2009) Alternative statistical methods for interpreting airborne Alder (Alnus glutimosa (L.) Gaertner) pollen. Int J Biometeorol 53:1–9

    Article  Google Scholar 

  • Pla-Dalmau JM (1960) Estudios palinológicos y precisiones morfológicas sobre los granos de polen de quinientas especies bota ́nicas del extremo NE de España. PhD thesis. Facultad de Farmacia Universidad de Barcelona, Barcelona, España

  • Recio M, Trigo M, Toro J, Cabezudo B (1999) Incidencia del polen de Quercus en la atmósfera de Málaga y su relación con los parámetros meteorológicos. Acta Bol Malacitana 24:77–88

    Google Scholar 

  • Ríos B, Torres-Jardón R, Ramírez-Arriaga E, Martínez-Bernal A, Rosas I (2016) Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City. Int J Biometeorol 60:771–787

    Article  Google Scholar 

  • Rizzi-Longo L, Pizzulin-Sauli M, Ganis P (2005) Aerobiology of Fagaceae pollen in Trieste (NE Italy). Aerobiologia 21:217–231

    Article  Google Scholar 

  • Rocha-Estrada A, Alvarado-Vázquez M, Torrres-Cepeda T, Foroughbakhch-Pournavab R (2008) Principales tipos polínicos presentes en el aire de la zona norte del área metropolitana de Monterrey, Nuevo León. Ciencia UANL 11:69–76

    Google Scholar 

  • Rodriguez-Rajo F, Méndez J, Jato V (2005) Factors affecting pollination ecology of Quercus anempophilious species in north-West Spain. Bot J Linn Soc 149:283–297

    Article  Google Scholar 

  • Romano B, Mincigrucci C, Frenguelli G, Bricchi E (1988) Airborne pollen content in the atmosphere of Central Italy (1982-1986). Cell Mol Life Sci 44:625–626

    Article  Google Scholar 

  • Rzedowski G, Rzedowski J (2005) Flora fanerogámica del Valle de México. Instituto de Ecología, AC. Y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán. (Digital Edition: INECOL2010). http://www.biodiversidad.gob.mx/publicaciones/librosDig/librosDig2.html Accessed December 2014

  • Salazar-Coria L (1995) Estudio anual de polen atmosférico en la zona sur de la Ciudad de México. Tesis de Licenciatura. Escuela Nacional de Estudios Profesionales Iztacala, Universidad Nacional Autónoma de México. México, D. F

  • Schueler S, Schlünzen KH (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194

    Article  Google Scholar 

  • Schwartz H (2003) Phenology: an integrative environmental science. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2008) A description of the advanced research WRF version 3 (No. NCAR/TN-475+ STR). National Center For Atmos Res Boulder Co Mesoscale and Microscale Meteorology Div

  • SMADF (2011) Secretaría del Medio Ambiente del Distrito Federal. Catálogo de especies vegetales producidas en los viveros Nezahualcóyotl y Yecapixtla. Árboles http://www.sma.df.gob.mx/plantas/index.php?op=consultas&ext=php&sub=tipo&selec=2. Accesed july 2015

  • Smith E G (2000) Sampling and identifying allergenic pollen and molds. An illustrated identification manual for air samplers. Texas, USA

  • Sofiev M, Bergmann K (2013) Allergenic pollen: a review of the production, release, distribution and health impacts. Springer, Netherlands

    Book  Google Scholar 

  • Spieksma F, Corden M, Etandt M, Millington W, Nikkels H, Nolard N, Schoenmakers C, Wachter R, de Weger L, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184

    Article  Google Scholar 

  • Tejera L, Beri A (2005) First volumetric airborne pollen sampling in Montevideo City, Uruguay. Aerobiologia 21:33–41

    Article  Google Scholar 

  • Tormo-Molina R, Silva Palaciso I, Muñoz Rodríguez A, Gallardo López F (1996) Pollen production in anemophilous trees. Grana 35:38–46

    Article  Google Scholar 

  • Torres-Valdos J (2006) Determinación de los agentes principales de polinosis en la Ciudad de México. Tesis de Posgrado. Universidad Nacional Autónoma de México. México D. F

  • Trigo M (2007) El polen en la atmósfera de Vélez-Málaga Concejalía de Medio Ambiente. España: Ayuntamiento de Vélez-Málaga

  • Trigo M, Jato V, Fernández D, Galán C (2008) Atlas aeropalinológico de España. España: Secretariado de publicaciones de la Universidad de León

  • Valencia A (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Méx 75:33–53

    Google Scholar 

  • Varela M, Valdiviesso T (1996) Phenological phases of Quercus suber L. Flowering For Genet 3:93–102

    Google Scholar 

  • Villegas G, Nolla J (2001) Atmospheric pollen in Santiago, Chile. Grana 40:126–132

    Article  Google Scholar 

  • Weryszko-Chmielewska E, Piotrowska K (2004) Airborne pollen calendar of Lublin. Poland Ann Agric Environ Med 11:91–97

    Google Scholar 

  • Wozniak M, Steiner A (2017) A prognostic pollen emissions model for climate models (PECM1.0). Geosci Model Dev 10:4105–4127

    Article  Google Scholar 

  • Yang C, Song J, Marshal A, Bradley G, Wilson Z (2009) Establishing regulatory models for anther endothecium development and the regulation of dehiscence. In: 20th International Conference on Arabidopsis Research Edinburgh, UK

Download references

Acknowledgements

We thank Ivonn Santiago López, Marisol Olivé Arrioja, Téllez Unzueta Fernando, Tania Robledo Retana, Miguel Angel Meneses, Hilda Adriana Guerrero Parra, Nancy Serrano Silva, Wilfrido Gutiérrez López and Manuel Garcia Espinosa from the Centre of Atmospheric Sciences of UNAM for their technical assistance.

Funding

This work was funded by the Secretaría de Ciencia y Tecnología e Innovación de la Ciudad de México (SECITI/PICS012–100/2012 and by SECITI/050/2016); by Instituto Nacional de Ecología y Cambio Climático (INECC/A1–004/2014); by CONACYT-SEMARNAT (2015–1-262680); and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (IN201109–3, IA100912), UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Calderón-Ezquerro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

Figure supplementary material: shows the percentage of Quercus pollen of the annual total pollen of each station and the city as a whole by sampling year. (TIFF 1244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Ezquerro, M.C., Martinez-Lopez, B., Guerrero-Guerra, C. et al. Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. Int J Biometeorol 62, 1721–1732 (2018). https://doi.org/10.1007/s00484-018-1572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-018-1572-9

Keywords

Navigation