Skip to main content
Log in

Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann–Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year (p < 0.01), whereas inter-annual NDVI trends were negligible; (2) the abrupt change detection showed that a major hydro-climatological change occurred in 2004, when abrupt changes occurred in lake volume, water level, and sunlight duration; and (3) the RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Aziz OI, Burn DH (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. J Hydrol 319(1):282–294. doi:10.1016/j.jhydrol.2005.06.039

    Article  Google Scholar 

  • Awange JL (2012) Environmental monitoring using GNSS: Global navigation satellite systems. Springer, Heidelberg

    Book  Google Scholar 

  • Bari Abarghouei H, Asadi Zarch M, Dastorani M, Kousari M, Safari Zarch M (2011) The survey of climatic drought trend in Iran. Stoch Env Res Risk A:1–13. doi:10.1007/s00477-011-0491-7

  • Benstead JP, March JG, Pringle CM, Scatena FN (1999) Effects of a low-head dam and water abstraction on migratory tropical stream biota. Ecol Appl 9(2):656–668

    Article  Google Scholar 

  • Bromley J, Brouwer J, Barker A, Gaze S, Valentine C (1997) The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger. J Hydrol 198(1–4):1–29

    Article  Google Scholar 

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255(1):107–122. doi:10.1016/S0022-1694(01)00514-5

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  • Chen X, Pan W (2002) Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. Int J Climatol 22(14):1781–1792. doi:10.1002/joc.823

    Article  Google Scholar 

  • Cui BS, Li X, Zhang KJ (2010) Classification of hydrological conditions to assess water allocation schemes for Lake Baiyangdian in North China. J Hydrol 385(1–4):247–256. doi:10.1016/j.jhydrol.2010.02.026

    Article  Google Scholar 

  • Elmore AJ, Manning SJ, Mustard JF, Craine JM (2006) Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J Appl Ecol 43(4):770–779. doi:10.1111/j.1365-2664.2006.01197.x

    Article  Google Scholar 

  • Fang J, Piao S, Tang Z, Peng C, Ji W (2001) Interannual variability in net primary production and precipitation. Science 293(5536):1723. doi:10.1126/science.293.5536.1723a

    Article  CAS  Google Scholar 

  • Glaser P, Janssens J, Siegel D (1990) The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. J Ecol 78(4):1021–1048

    Article  Google Scholar 

  • Gómez-Mendoza L, Galicia L, Cuevas-Fernández M, Magaña V, Gómez G, Palacio-Prieto J (2008) Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships. Int J Biometeorol 52(6):511–520. doi:10.1007/s00484-008-0147-6

    Article  Google Scholar 

  • Hao F, Zhang X, Ouyang W, Skidmore A, Toxopeus A (2011) Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environmental Modeling and Assessment:1–10. doi:10.1007/s10666-011-9297-8

  • Jacoby GC, D'Arrigo RD, Davaajamts T (1996) Mongolian tree rings and 20th-century warming. Science 273(5276):771–773. doi:10.1126/science.273.5276.771

    Article  CAS  Google Scholar 

  • Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98. doi:10.1016/s0034-4257(03)00174-3

    Article  Google Scholar 

  • Johnston C, Zedler J, Tulbure M, Frieswyk C, Bedford B, Vaccaro L (2009) A unifying approach for evaluating the condition of wetland plant communities and identifying related stressors. Ecol Appl 19(7):1739–1757

    Article  Google Scholar 

  • Karlsen SR, Solheim I, Beck PSA, Høgda KA, Wielgolaski FE, Tømmervik H (2007) Variability of the start of the growing season in Fennoscandia, 1982–2002. Int J Biometeorol 51(6):513–524. doi:10.1007/s00484-007-0091-x

    Article  Google Scholar 

  • Kawabata A, Ichii K, Yamaguchi Y (2001) Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int J Remote Sens 22(7):1377–1382. doi:10.1080/01431160119381

    Article  Google Scholar 

  • Maselli F, Chiesi M, Barbati A, Corona P (2010) Assessment of forest net primary production through the elaboration of multisource ground and remote sensing data. J Environ Monitor 12(5):1082–1091. doi:10.1039/b924629k

    Article  CAS  Google Scholar 

  • Myronidis D, Stathis D, Ioannou K, Fotakis D (2012) An integration of statistics temporal methods to track the effect of drought in a shallow Mediterranean Lake. Water Resour Manag:1–19. doi:10.1007/s11269-012-0169-z

  • Ngongondo C, Xu C-Y, Tallaksen L, Alemaw B, Chirwa T (2011) Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches. Stoch Env Res Risk A:1–17. doi:10.1007/s00477-011-0480-x

  • Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate change. J Hydrol 334(3–4):319–333. doi:10.1016/j.jhydrol.2006.10.011

    Article  Google Scholar 

  • Omute P, Corner R, Awange JL (2012) The use of NDVI and its derivatives for monitoring Lake Victoria's water level and drought conditions. Water Resour Manag:1–23. doi:10.1007/s11269-011-9974-z

  • O'Reilly CM, Alin SR, Plisnier P-D, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424(6950):766–768. doi:10.1038/nature01833

    Article  Google Scholar 

  • Piao S, Fang J, Ji W, Guo Q, Ke J, Tao S, Woods K (2004) Variation in a satellite-based vegetation index in relation to climate in China. J Veg Sci 15(2):219–226. doi:10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337. doi:10.1126/science.1115233

    Article  Google Scholar 

  • Shafroth PB, Stromberg JC, Patten DT (2002) Riparian vegetation response to altered disturbance and stress regimes. Ecol Appl 12(1):107–123

    Article  Google Scholar 

  • Suzuki R, Xu J, Motoya K (2006) Global analyses of satellite-derived vegetation index related to climatological wetness and warmth. Int J Climatol 26(4):425–438. doi:10.1002/joc.1256

    Article  Google Scholar 

  • Tabari H, Talaee PH (2011) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396(3–4):313–320. doi:10.1016/j.jhydrol.2010.11.034

    Article  Google Scholar 

  • Tesemma Z, Mohamed Y, Steenhuis T (2010) Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol Process. doi:10.1002/hyp.7893

    Google Scholar 

  • Vanacker V, Linderman M, Lupo F, Flasse S, Lambin E (2005) Impact of short-term rainfall fluctuation on interannual land cover change in sub-Saharan Africa. Global Ecol Biogeogr 14(2):123–135. doi:10.1111/j.1466-822X.2005.00136.x

    Article  Google Scholar 

  • Wang T, Kou X, Xiong Y, Mou P, Wu J, Ge J (2010) Temporal and spatial patterns of NDVI and their relationship to precipitation in the Loess Plateau of China. Int J Remote Sens 31(7):1943–1958. doi:10.1080/01431160902929263

    Article  CAS  Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang ZF (2012a) Long-term water quality variations and chlorophyll a simulation with an emphasis on different hydrological periods in Lake Baiyangdian, North China. J Environ Inform 20(2):90–102. doi:10.3808/jei.201000223

    Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang ZF (2012b) Nutrient response to periodic hydrological fluctuations in a recharging lake: a case study of Lake Baiyangdian. Fresenius Environ Bull 21(5a):1254–1262.

    Google Scholar 

  • Wang F, Wang X, CHEN B, Zhao Y, Yang ZF (2013a) Chlorophyll a simulation in a Lake Ecosystem using a model with wavelet analysis and Artificial Neural Network. Environ Manag 51(5):1044–1054. doi:10.1007/s00267-013-0029-5

    Google Scholar 

  • Wang F, Wang X, Zhao Y, Yang ZF (2013b) Long-term periodic structure and seasonal-trend decomposition of water level in Lake Baiyangdian, Northern China. Int J Environ Sci Technol. doi:10.1007/s13762-013-0362-5

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17(4):355–365. doi:10.1023/a:1020561630963

    Article  Google Scholar 

  • Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218. doi:10.1023/B:WARM.0000043140.61082.60

    Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16(9):1807–1829

    Article  Google Scholar 

  • Zeileis A, Kleiber C, Krämer W, Hornik K (2003) Testing and dating of structural changes in practice. Comput Stat Data An 44(1–2):109–123. doi:10.1016/s0167-9473(03)00030-6

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biol 10(7):1133–1145. doi:10.1111/j.1529-8817.2003.00784.x

    Article  Google Scholar 

  • Zhao Y, Xia XH, Yang ZF, Xia N (2011) Temporal and spatial variations of nutrients in Baiyangdian Lake, North China. J Environ Inf 17(2):102–108. doi:10.3808/jei.201100192

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Water Pollution Control Major Project of China (No. 533 2008ZX07209– 009), the National Natural Sciences Foundation of China (No. 31301921), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20101401110006) and the National Science Foundation for Innovative Research Group (No. 51121003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Wang, X., Zhao, Y. et al. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. Int J Biometeorol 58, 1531–1543 (2014). https://doi.org/10.1007/s00484-013-0758-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0758-4

Keywords

Navigation