Skip to main content

Advertisement

Log in

Climate change in Europe and effects on thermal resources for crops

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Atmospheric variables play a fundamental role in driving man-managed ecosystems and more specifically in agro-ecosystems, determining the quantity and quality of crop production. On the other hand, climate variability can be seen as the superimposition of gradual and abrupt changes. This paper is focused on European surface air temperature in the period 1951–2010. Analysis of this dataset identified breakpoints that define two homogeneous sub-periods: 1951–1987 and 1988–2010. Thermal resources for crops were analyzed adopting a “normal heat hours” approach. Computation highlighted a general increase in thermal resources in the European continent for crop groups II and III (C3 and C4 plants adapted to high or moderate temperatures), while a decline of thermal resources for crop group I (cold adapted C3) was highlighted in the Mediterranean area. The climate variability justifies a change in the potential latitudinal limits of different groups of crops, representing a fundamental step for crop adaptation to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1980) Likelihood and the Bayes procedure. In: Bernardo JM et al (eds) Bayesian statistics. University Press, Valencia, pp 143–166

    Google Scholar 

  • Alley B, Marotzke J, Nordhaus D, Overpeck T, Peteet M, Pielke R, Pierrehumbert T, Rhines B (2003) Abrupt climate change. Science 299(5615):2005–2010

    Article  CAS  Google Scholar 

  • Bai J, Perron P (2003) Computation and analysis of multiple structural change models. J Appl Econ 18:1–22

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Barry RG (1992) Mountain weather and climate, 2nd edn. Routledge, London

    Google Scholar 

  • Birks HB, Heiri O, Seppä H, Bjune A (2010) Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol J 3:68–110

    Google Scholar 

  • de Wit CT (1978) Simulation of assimilation, respiration and transpiration of crops. PUDOC, Wageningen

    Google Scholar 

  • Doorenboos J, Kassam AH (1979) Yield response to water. Food and Agriculture Organization of the United Nations, Rome

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Hardegree SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann Bot 97(6):1115–1125

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  CAS  Google Scholar 

  • IPCC (2007) Fourth Assessment Report (AR4). Climate Change 2007 [www.ipcc.ch]

  • Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North sea. Synoptic Climatology Branch Memorandum, 62, Meteorological Office, London

    Google Scholar 

  • Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Clim 22:1441–1453

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Mariani L (2008) Italian agriculture and climatic risk. Ital J Agrometeorol 2:10–17

    Google Scholar 

  • Mariani L, Parisi S, Cola G (2008) Space and time behavior of climatic hazard of low temperature for single rice crop in the mid latitude. Int J Clim 29(12):1862–1871

    Article  Google Scholar 

  • Nejedlik P, Orlandini S (2008) Survey of agrometeorological practices and applications in Europe regarding climatic change impacts. Cost Action 734, 320 pp

    Google Scholar 

  • Parton WJ, Logan JA (1981) A model for diurnal variation in soil and air temperature. Meteorology 23:205–216

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Pielke RA, Wage N (1987) Note on a definition of normal weather. National Weather Digest, climatology note, 20-22

  • Réaumur RA (1735) Observation du thérmomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelques-unes de nos isles de l’Amerique, Mémoires de l’Acàdemie Royale des Sciences, Paris, 737–754

  • Rial JA, Pielke RA Sr, Beniston M, Claussen M, Canadell J, Cox P, Held H, de Noblet-Ducoudré N, Prinn R, Reynolds JF, Salas JD (2004) Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim Chang 65(1–2):11–38

    Article  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. Int J Clim 22(14):1739–1755

    Article  Google Scholar 

  • Seidel J, Lanzante R (2003) An assessment of three alternative to linear trends for characterizing global atmospheric temperature changes. J Geophys Res 109:1–10

    Google Scholar 

  • Sneyers R, Palmieri S, Siani AM (1993) Characterizing trends in climatological time series. An application to Brera observatory (Milan) rainfall series. Proceedings of international conference on applications of time series analysis to astronomy and meteorology, University of Padova, 6–10 September 1993:321–328

  • Streck NA (2004) A temperature response function for development of the chrysanthemum (Chrysanthemum x morifolium Ramat.), Cienc. Rural vol.34 no.1 Santa Maria Jan/Feb 2004

  • Trigo RM, Da Camara C (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581

    Article  Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval climate anomaly. Science 324:78–80

    Article  CAS  Google Scholar 

  • van den Besselaar EJM, Haylock MR, van der Schrier G, Klein Tank AMG (2011) A European daily high-resolution observational gridded data set of sea level pressure, J Geophys Res 116(D11110):11

    Google Scholar 

  • van der Voet H (1994) Comparing the predictive accuracy of models using a simple randomization test. Chemom Intell Lab Syst 25:313–323

    Article  Google Scholar 

  • Wang E, Engel T (1998) Simulation of phenological development of wheat crops. Agric Systems 58(1998):1–24

    Article  Google Scholar 

  • Weikai Y, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614

    Article  Google Scholar 

  • Werner PC, Gerstengarbe FW, Fraedrich K, Oesterle K (2000) Recent climate change in the North Atlantic/European sector. Int J Climatol 20(5):463–471

    Article  Google Scholar 

  • World Meteorological Organization (1989) World Climate Data Program: Calculation of Monthly and Annual 30-year Standard Normals, Prepared by a meeting of experts, Washington, DC. March 1989, WCDP-No. 10, WMO-TD/No. 341

Download references

Acknowledgments

We would like to thank Paolo Mezzalsalma (Arpa Emilia Romagna—Servizio Idrometerologico) for valuable suggestions useful in assessing the macroscale representativeness of European meteorological stations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Parisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, L., Parisi, S.G., Cola, G. et al. Climate change in Europe and effects on thermal resources for crops. Int J Biometeorol 56, 1123–1134 (2012). https://doi.org/10.1007/s00484-012-0528-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0528-8

Keywords

Navigation