Skip to main content
Log in

Bayesian maximum entropy approach and its applications: a review

  • Review Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The present paper reviews the conceptual framework and development of the Bayesian Maximum Entropy (BME) approach. BME has been considered as a significant breakthrough and contribution to applied stochastics by introducing an improved, knowledge-based modeling framework for spatial and spatiotemporal information. In this work, one objective is the overview of distinct BME features. By offering a foundation free of restrictive assumptions that limit comparable techniques, an ability to integrate a variety of prior knowledge bases, and rigorous accounting for both exact and uncertain data, the BME approach was coined as introducing modern spatiotemporal geostatistics. A second objective is to illustrate BME applications and adoption within numerous different scientific disciplines. We summarize examples and real-world studies that encompass the perspective of science of the total environment, including atmosphere, lithosphere, hydrosphere, and ecosphere, while also noting applications that extend beyond these fields. The broad-ranging application track suggests BME as an established, valuable tool for predictive spatial and space–time analysis and mapping. This review concludes with the present status of BME, and tentative paths for future methodological research, enhancements, and extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In geostatistical literature, the terms “prediction” and “estimation” are often used interchangeably. In the following, we distinguish between the two terms by following the statistical vernacular. In it, prediction is the inference of random variable values, whereas estimation designates the inference tasks where unknown parameters are involved.

  2. In geostatistical literature, the term “homogeneity” is commonly used to refer to what the statistical vernacular calls “spatial stationarity”.

  3. There are, of course, strong arguments in support of using observed data, too. For example, data-based results via well-designed experimental designs can be used to investigate potential flaws in unestablished theoretical rules and principles.

  4. As of May 2017, available at http://seksgui.org.

  5. As of May 2017, available at http://www.unc.edu/depts/case/BMEGUI.

  6. As of May 2017, available at http://140.112.63.249/STARBME/index.html.

  7. In leave-one-out cross-validation, observations are removed from a dataset one at a time. The attribute is predicted at each vacated location from the remaining data, and the result is compared to the observed value. In general, it is recommended to keep validation data as a separate set from training observations, so that cross-validation produces a nearly unbiased estimate of the true error expected on an independent test set (e.g., Efron 1983; Varma and Simon 2006).

References

  • Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of Ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined bayesian maximum entropy-LUR approaches. Environ Health Perspect 122:970–976

    Google Scholar 

  • Akita Y, Chen JC, Serre ML (2012) The moving-window Bayesian maximum entropy framework: estimation of PM2.5 yearly average concentration across the contiguous United States. J Eposure Sci Environ Epidemiol 22:496–501

    Article  Google Scholar 

  • Akita Y, Baldasano JM, Beelen R, Cirach M, de Hoogh K, Hoek G, Nieuwenhuijsen M, Serre ML, de Nazelle A (2014) Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. Environ Sci Technol 48:4452–4459

    Article  CAS  Google Scholar 

  • Angulo J, Yu H-L, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a BME-SIR approach. PLoS ONE 8:e72168

    Article  CAS  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  • Bayat B, Zahraie B, Taghavi F, Nasseri M (2013) Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theoret Appl Climatol 113:429–444

    Article  Google Scholar 

  • Bayat B, Nasseri M, Naser G (2014) Improving Bayesian maximum entropy and ordinary Kriging methods for estimating precipitations in a large watershed: a new cluster-based approach. Can J Earth Sci 51:43–55

    Article  Google Scholar 

  • Beckerman BS, Jerrett M, Serre M, Martin RV, Lee SJ, van Donkelaar A, Ross Z, Su J, Burnett RT (2013) A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ Sci Technol 47:7233–7241

    Article  CAS  Google Scholar 

  • Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial prediction context: a general formulation. Stoch Environ Res Risk Assess 21(6):695–709

    Article  Google Scholar 

  • Bogaert P, Christakos G, Jerrett M, Yu H-L (2009) Spatiotemporal modelling of ozone distribution in the State of California. Atmos Environ 43:2471–2480

    Article  CAS  Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Baig JA, Arain SS, Talpur FN, Kazi AG, Ali J, Panhwar AH, Arain MB (2016) Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Sci Total Environ 544:653–660

    Article  CAS  Google Scholar 

  • Brus D, Bogaert P, Heuvelink G (2008) Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. Eur J Soil Sci 59:166–177

    Article  Google Scholar 

  • Cao C, Xu M, Chang C, Xue Y, Zhong S, Fang L, Cao W, Zhang H, Gao M, He Q, Zhao J, Chen W, Zheng S, Li X (2010) Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-modeling. Chin Sci Bull 55:4168–4178

    Article  Google Scholar 

  • Choi KM, Yu HL, Wilson ML (2008) Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001. Stoch Env Res Risk Assess 22:S15–S25

    Article  Google Scholar 

  • Choy SL, O’Leary R, Mengersen K (2009) Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models. Ecology 90:265–277

    Article  Google Scholar 

  • Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22:763–777

    Article  Google Scholar 

  • Christakos G (1991) On certain classes of spatiotemporal random-fields with applications to space-time data-processing. IEEE Trans Syst Man Cybern 21:861–875

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G (2002) On the assimilation of uncertain physical knowledge bases: bayesian and non-Bayesian techniques. Adv Water Resour 25:1257–1274

    Article  Google Scholar 

  • Christakos G (2010) Integrative problem-solving in a time of decadence. Springer, New York

    Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling. Kluwer Acadamic Publication, Boston

    Google Scholar 

  • Christakos G, Kolovos A (1999) A study of the spatiotemporal health impacts of ozone exposure. J Expo Anal Environ Epidemiol 9:322–335

    Article  CAS  Google Scholar 

  • Christakos G, Li X (1998) Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators? Math Geol 30:435–462

    Article  Google Scholar 

  • Christakos G, Serre ML (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34:3393–3406

    Article  CAS  Google Scholar 

  • Christakos G, Serre ML, Kovitz JL (2001) BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. J Geophys Res Atmos 106:9717–9731

    Article  Google Scholar 

  • Christakos G, Bogaert P, Serre M (2002) Temporal GIS: advanced functions for field-based applications. Springer, Berlin

    Google Scholar 

  • Christakos G, Kolovos A, Serre ML, Vukovich F (2004) Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans Geosci Remote Sens 42:991–1008

    Article  Google Scholar 

  • Christakos G, Olea RA, Serre ML, Wang LL, Yu HL (2005) Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer, Berlin

    Google Scholar 

  • Coulliette AD, Money ES, Serre ML, Noble RT (2009) Space/time analysis of fecal pollution and rainfall in an Eastern North Carolina Estuary. Environ Sci Technol 43:3728–3735

    Article  CAS  Google Scholar 

  • David M (1977) Geostatistical ore reverse estimation. Elsevier, Amsterdam

    Google Scholar 

  • De Nazelle A, Arunachalam S, Serre ML (2010) Bayesian maximum entropy integration of ozone observations and model predictions: an application for attainment demonstration in North Carolina. Environ Sci Technol 44:5707–5713

    Article  CAS  Google Scholar 

  • Dionisio KL, Arku RE, Hughes AF, Vallarino J, Carmichael H, Spengler JD, Agyei-Mensah S, Ezzati M (2010) Air pollution in accra neighborhoods: spatial, socioeconomic, and temporal patterns. Environ Sci Technol 44:2270–2276

    Article  CAS  Google Scholar 

  • D’Or D, Bogaert P (2003) Continuous-valued map reconstruction with the Bayesian maximum entropy. Geoderma 112:169–178

    Article  Google Scholar 

  • D’Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch Environ Res Risk Assess 15:87–100

    Article  Google Scholar 

  • Douaik A, Van Meirvenne M, Toth T (2005) Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma 128:234–248

    Article  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331

    Article  Google Scholar 

  • Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–520

    Article  Google Scholar 

  • Ewing GM (1969) Calculus of variations with applications. W. W. Norton, New York

    Google Scholar 

  • Fan L, Xiao Q, Wen JG, Liu Q, Jin R, You DQ, Li XW (2015) Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sens 7:13273–13297

    Article  Google Scholar 

  • Fox L, Serre ML, Lippmann SJ, Rodriguez DA, Bangdiwala SI et al (2015) Spatiotemporal approaches to analyzing pedestrian fatalities: the case of Cali, Colombia. Traffic Injury Prevention 16:571–577

    Article  Google Scholar 

  • Gao S, Zhu Z, Liu S, Jin R, Yang G, Tan L (2014) Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. Int J Appl Earth Obs Geoinf 32:54–66

    Article  Google Scholar 

  • Hampton KH, Serre ML, Gesink DC, Pilcher CD, Miller WC (2011) Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping. Int J Health Geogr 10:1

    Article  Google Scholar 

  • Hayunga DK, Kolovos A (2016) Geostatistical space–time mapping of house prices using Bayesian maximum entropy. Intl J of Geog Inf Sci. doi:10.1080/13658816.2016.1165820

    Google Scholar 

  • He T, Yang Z, Liu T, Shen Y, Fu X, Qian X, Zhang Y, Wang Y, Xu Z, Zhu S, Mao C, Xu G, Tang J (2016) Ambient air pollution and years of life lost in Ningbo, China. Sci Rep 6:22485

    Article  CAS  Google Scholar 

  • Heywood B, Brierley A, Gull S (2006) A quantified Bayesian maximum entropy estimate of Antarctic krill abundance across the Scotia Sea and in small-scale management units from the CCAMLR-2000 survey. Ccamlr Sci 13:97–116

    Google Scholar 

  • Hristopulos DT, Christakos G (2001) Practical calculation of non-Gaussian multivariate moments in spatiotemporal Bayesian maximum entropy analysis. Math Geol 33(5):543–568

    Article  Google Scholar 

  • Hu JG, Zhou J, Zhou GM, Luo YQ, Xu XJ, Li PH, Liang JY (2016) Improving estimations of spatial distribution of soil respiration using the Bayesian maximum entropy algorithm and soil temperature as auxiliary data. PLOS ONE 11(1):e0146589

    Article  CAS  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jerrett M, Turner MC, Beckerman BS, Pope CA III, van Donkelaar A et al (2017) Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ Health Perspect 125(4):552–559

    Google Scholar 

  • Journel A, Huijbregts C (1978) Mining geostatistics. Acadamic Press, London

    Google Scholar 

  • Kolovos A, Christakos G, Serre ML, Miller CT (2002) Computational BME solution of a stochastic advection-reaction equation in the light of site-specific information. Water Resour Res 38(12):1318–1334

    Article  Google Scholar 

  • Kolovos A, Skupin A, Jerrett M, Christakos G (2010) Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. Environ Sci Technol 44:6738–6744

    Article  CAS  Google Scholar 

  • Kolovos A, Angulo JM, Modis K, Papantonopoulos G, Wang J-F, Christakos G (2012) Model-driven development of covariances for spatiotemporal environmental health assessment. Environ Monit Assess. doi:10.1007/s10661-012-2593-1

    Google Scholar 

  • Kolovos A, Smith LM, Schwab-McCoy A, Gengler S, Yu H-L (2016) Emerging patterns in multi-sourced data modeling uncertainty. Spat Stat Spec Issue Emerg Patterns 18A:300–317. doi:10.1016/j.spasta.2016.05.005

    Google Scholar 

  • Krige D (1952) A statistical analysis of some of the borehole values in the orange free state goldfield. J Chem Metall Min Soc S Afr 53:47–70

    Google Scholar 

  • Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol Lett 13:900–914

    Article  Google Scholar 

  • Law DCG, Bernstein KT, Serre ML, Schumacher CM, Leone PA, Zenilman JM, Miller WC, Rompalo AM (2006) Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach. Ann Epidemiol 16:797–804

    Article  Google Scholar 

  • Le ND, Zidek JV (2006) Statistical analysis of environmental space-time processes. Springer, Berlin

    Google Scholar 

  • Lee SJ, Wentz EA (2008) Applying Bayesian maximum entropy to extrapolating local-scale water consumption in Maricopa County, Arizona. Water Resour Res 44:W01401. doi:10.1029/2007WR006101

    Google Scholar 

  • Lee S-J, Balling R, Gober P (2008) Bayesian maximum entropy mapping and the soft data problem in urban climate research. Ann Assoc Am Geogr 98:309–322

    Article  Google Scholar 

  • Lee S-J, Wentz EA, Gober P (2010) Space–time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona. Stoch Environ Res Risk Assess 24:283–295

    Article  Google Scholar 

  • Lee S-J, Serre ML, van Donkelaar A, Martin RV, Burnett RT, Jerrett M (2012) Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 Concentrations across the Continental United States. Environ Health Perspect 120(12):1727–1732

    CAS  Google Scholar 

  • Li AH, Bo YC, Chen L (2013a) Bayesian maximum entropy data fusion of field-observed leaf area index (LAI) and landsat enhanced thematic mapper plus-derived LAI. Int J Remote Sens 34:227–246

    Article  Google Scholar 

  • Li AH, Bo YC, Zhu YX, Guo P, Bi J, He YQ (2013b) Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens Environ 135:52–63

    Article  Google Scholar 

  • Li X, Li P, Zhu H (2013c) Coal seam surface modeling and updating with multi-source data integration using Bayesian geostatistics. Eng Geol 164:208–221

    Article  Google Scholar 

  • Li L, Yang J, Song Y-F, Chen P-Y, Ou C-Q (2016) The burden of COPD mortality due to ambient air pollution in Guangzhou, China. Sci Rep 6:25900

    Article  CAS  Google Scholar 

  • LoBuglio JN, Characklis GW, Serre ML (2007) Cost-effective water quality assessment through the integration of monitoring data and modeling results. Water Resour Res 43(3):W03435. doi:10.1029/2006WR005020

    Article  CAS  Google Scholar 

  • Ma ZW, Hu XF, Huang L, Bi J, Liu Y (2014) Estimating ground-level PM2.5 in China Using satellite remote sensing. Environ Sci Technol 48:7436–7444

    Article  CAS  Google Scholar 

  • Mahbub P, Ayoko GA, Goonetilleke A, Egodawatta P, Kokot S (2010) Impacts of Traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads. Environ Sci Technol 44:8904–8910

    Article  CAS  Google Scholar 

  • Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, Mcbride M, Mengersen K (2012) eliciting expert knowledge in conservation science. Conserv Biol 26:29–38

    Article  Google Scholar 

  • Matheron G (1962) Traité de géostatistique appliquée. Technip, Paris

    Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation. Masson, Paris

    Google Scholar 

  • McCarthy MA, Masters P (2005) Profiting from prior information in Bayesian analyses of ecological data. J Appl Ecol 42:1012–1019

    Article  Google Scholar 

  • Messier KP, Akita Y, Serre ML (2012) Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene. Environ Sci Technol 46(5):2772–2780

    Article  CAS  Google Scholar 

  • Messier KP, Kane E, Bolich R, Serre ML (2014) Nitrate variability in groundwater of North Carolina using monitoring and private well data models. Environ Sci Technol 48:10804–10812

    Article  CAS  Google Scholar 

  • Messier KP, Campbell T, Bradley PJ, Serret ML (2015) Estimation of groundwater Radon in North Carolina using land use regression and Bayesian maximum entropy. Environ Sci Technol 49:9817–9825

    Article  CAS  Google Scholar 

  • Modis K, Vatalis KI, Sachanidis C (2013) Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. Int J Coal Geol 112:173–179

    Article  CAS  Google Scholar 

  • Money ES, Carter GP, Serre ML (2009) Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan river in New Jersey. Environ Sci Technol 43:3736–3742

    Article  CAS  Google Scholar 

  • Money ES, Sackett DK, Aday DD, Serre ML (2011) Using River distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations. Environ Sci Technol 45:7746–7753

    Article  CAS  Google Scholar 

  • Nol L, Heuvelink GBM, Veldkamp A, de Vries W, Kros J (2010) Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale. Geoderma 159:9–23

    Article  CAS  Google Scholar 

  • Olea RA (1999) Geostatistics. Kluwer Acadamic Publication, Boston

    Google Scholar 

  • Orton TG, Lark RM (2007) Estimating the local mean for Bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable. Eur J Soil Sci 58:60–73

    Article  Google Scholar 

  • Perez-Hoyos A, Garcia-Haro FJ, San-Miguel-Ayanz J (2012) A methodology to generate a synergetic land-cover map by fusion of different land-cover products. Int J Appl Earth Obs Geoinf 19:72–87

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  CAS  Google Scholar 

  • Puangthongthub S, Wangwongwatana S, Kamens RM, Serre ML (2007) Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network. Atmos Environ 41:7788–7805

    Article  CAS  Google Scholar 

  • Reyes JM, Serre ML (2014) An LUR/BME framework to estimate PM2. 5 explained by on road mobile and stationary sources. Environ Sci Technol 48:1736–1744

    Article  CAS  Google Scholar 

  • Sanders AP, Messier KP, Shehee M, Rudo K, Serre ML, Fry RC (2012) Arsenic in North Carolina: public health implications. Environ Int 38:10–16

    Article  CAS  Google Scholar 

  • Savelyeva E, Utkin S, Kazakov S, Demyanov V (2010) Modeling spatial uncertainty for locally uncertain data. Geoenv VII Geostat Environ Appl 16:295–306

    Google Scholar 

  • Schijven J, Forêt JM, Chardon J, Teunis P, Bouwknegt M, Tangena B (2016) Evaluation of exposure scenarios on intentional microbiological contamination in a drinking water distribution network. Water Res 96:148–154

    Article  CAS  Google Scholar 

  • Sedda L, Atkinson PM, Filigheddu MR, Cotzia G, Dettori S (2011) Spatio-temporal analysis of tree height in a young cork oak plantation. Int J Geogr Inf Sci 25:1083–1096

    Article  Google Scholar 

  • Serre ML, Christakos G (2002) BME-based hydrogeologic parameter estimation in groundwater flow modelling. Acta Univ Carol Geol 46:566–570

    Google Scholar 

  • Serre ML, Christakos G, Li H, Miller CT (2003a) A BME solution of the inverse problem for saturated groundwater flow. Stoch Environ Res Risk Assess 17(6):354–369

    Article  Google Scholar 

  • Serre ML, Kolovos A, Christakos G, Modis K (2003b) An application of the holistochastic human exposure methodology to naturally occurring arsenic in Bangladesh drinking water. Risk Anal 23:515–528

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Shi T, Yang X, Christakos G, Wang J, Liu L (2015a) Spatiotemporal interpolation of rainfall by combining BME theory and satellite rainfall estimates. Atmosphere 6:1307–1326

    Article  Google Scholar 

  • Shi Y, Zhou X, Yang X, Shi L, Ma S (2015b) Merging Satellite Ocean Color Data With Bayesian Maximum Entropy Method. IEEE J Sel Top Appl Earth Obs Remote Sens 8:3294–3304

    Article  Google Scholar 

  • Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics—a guide for the uninitiated. Trends Genet 15:354–358

    Article  CAS  Google Scholar 

  • Sun XL, Wu YJ, Lou YL, Wang HL, Zhang C, Zhao YG, Zhang GL (2015) Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China. Eur J Soil Sci 66:1012–1022

    Article  Google Scholar 

  • Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. JAWRA J Am Water Resour Assoc 21:365–380

    Article  Google Scholar 

  • Tang SL, Yang XF, Dong D, Li ZW (2015) Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method. Front Earth Sci 9:722–731

    Article  Google Scholar 

  • Tang Q, Bo Y, Zhu Y (2016) Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method. J Geophys Res Atmos 121(8):4034–4048

    Article  Google Scholar 

  • Urbani F, D’Alessandro P, Frasca R, Biondi M (2015) Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zoologischer Anzeiger 258:99–109

    Article  Google Scholar 

  • Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. Bioinformatics. doi:10.1186/1471-2105-7-91

    Google Scholar 

  • Vorosmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50:753–765

    Article  Google Scholar 

  • Vyas VM, Tong SN, Uchrin C, Georgopoulos PG, Carter GR (2004) Geostatistical estimation of horizontal hydraulic conductivity for the Kirkwood–Cohansey aquifer. J Am Water Resour Assoc 40:187–195

    Article  Google Scholar 

  • Wang H, Wang N, Wang B, Zhao Q, Fang H, Fu C, Tang C, Jiang F, Zhou Y, Chen Y, Jiang Q (2016) Antibiotics in drinking water in shanghai and their contribution to antibiotic exposure of school children. Environ Sci Technol 50:2692–2699

    Article  CAS  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, New York

    Book  Google Scholar 

  • Yang Y, Christakos G (2015) Spatiotemporal characterization of ambient PM2. 5 concentrations in Shandong Province (China). Environ Sci Technol 49:13431–13438

    Article  CAS  Google Scholar 

  • Yu HL, Chu HJ (2010) Understanding space-time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. J Hydrol 381:239–247

    Article  Google Scholar 

  • Yu HL, Wang CH (2010) Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos Environ 44:3053–3065

    Article  CAS  Google Scholar 

  • Yu HL, Wang CH (2013) Quantile-based bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels. Environ Sci Technol 47:1416–1424

    CAS  Google Scholar 

  • Yu HL, Kolovos A, Christakos G, Chen JC, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS-GUI framework. Stoch Environ Res Risk Assess 21:555–572

    Article  Google Scholar 

  • Yu HL, Chen JC, Christakos G, Jerrett M (2009) BME estimation of residential exposure to ambient PM10 and Ozone at multiple time scales. Environ Health Perspect 117:537–544

    Article  CAS  Google Scholar 

  • Yu HL, Chiang CT, Lin SD, Chang TK (2010) Spatiotemporal analysis and mapping of oral cancer risk in Changhua County (Taiwan): an application of generalized Bayesian maximum entropy method. Ann Epidemiol 20:99–107

    Article  Google Scholar 

  • Yu HL, Wang CH, Liu MC, Kuo YM (2011) Estimation of fine particulate matter in Taipei using landuse regression and Bayesian maximum entropy methods. Int J Environ Res Public Health 8:2153–2169

    Article  Google Scholar 

  • Yu H-L, Ku S-J, Kolovos A (2012) Advanced space-time predictive analysis with STAR-BME. In: Proceedings of the 20th international conference on advances in geographic information systems, pp. 593–596. ACM

  • Yu H-L, Angulo JM, Chen M-H, Wu J, Christakos G (2014) An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan). J Biom 56(3):428–440. doi:10.1002/bimj.201200270

    Article  Google Scholar 

  • Yu HL, Ku SC, Kolovos A (2016) A GIS tool for spatiotemporal modeling under a knowledge synthesis framework. Stoch Environ Res Risk Assess 30:665–679

    Article  Google Scholar 

  • Zagouras A, Kolovos A, Coimbra CFM (2015) Objective framework for optimal distribution of solar irradiance monitoring networks. Renew Energy 80:153–165. doi:10.1016/j.renene.2015.01.046

    Article  Google Scholar 

  • Zhang FS, Yang ZT, Zhong SB, Huang QY (2016) Exploring mean annual precipitation values (2003–2012) in a specific area (36 degrees N-43 degrees N, 113 degrees E-120 degrees E) using meteorological, elevational, and the nearest distance to coastline variables. Adv Meteorol 2016:2107908. doi:10.1155/2016/2107908

    Google Scholar 

  • Zhao Y, Kockelman KM (2002) The propagation of uncertainty through travel demand models: an exploratory analysis. Ann Reg Sci 36(1):145–163

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 529105-N11701ZJ). Alexander Kolovos received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kolovos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Kolovos, A. Bayesian maximum entropy approach and its applications: a review. Stoch Environ Res Risk Assess 32, 859–877 (2018). https://doi.org/10.1007/s00477-017-1419-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1419-7

Keywords

Navigation