Skip to main content
Log in

The wrapped skew Gaussian process for analyzing spatio-temporal data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We consider modeling of angular or directional data viewed as a linear variable wrapped onto a unit circle. In particular, we focus on the spatio-temporal context, motivated by a collection of wave directions obtained as computer model output developed dynamically over a collection of spatial locations. We propose a novel wrapped skew Gaussian process which enriches the class of wrapped Gaussian process. The wrapped skew Gaussian process enables more flexible marginal distributions than the symmetric ones arising under the wrapped Gaussian process and it allows straightforward interpretation of parameters. We clarify that replication through time enables criticism of the wrapped process in favor of the wrapped skew process. We formulate a hierarchical model incorporating this process and show how to introduce appropriate latent variables in order to enable efficient fitting to dynamic spatial directional data. We also show how to implement kriging and forecasting under this model. We provide a simulation example as a proof of concept as well as a real data example. Both examples reveal consequential improvement in predictive performance for the wrapped skew Gaussian specification compared with the earlier wrapped Gaussian version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the definition of \({\text{atan}}^*\) see Jammalamadaka and SenGupta (2001), p. 13

References

  • Allard D, Naveau P (2007) A new spatial skew-normal random field model. Commun Stat 36(9):1821–1834

    Article  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    Google Scholar 

  • Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32(2):159–188

    Article  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J R Stat Soc Ser B 61(3):579–602

    Article  Google Scholar 

  • Azzalini A, Valle AD (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Carlin BP (2014) Hierarchical modeling and analysis for spatial data, 2nd edn. Chapman and Hall/CRC, New York

    Google Scholar 

  • Bao L, Gneiting T, Grimit EP, Guttorp P, Raftery AE (2009) Bias correction and bayesian model averaging for ensemble forecasts of surface wind direction. Mon Weather Rev 138(5):1811–1821

    Article  Google Scholar 

  • Breckling J (1989) The analysis of directional time series: applications to wind speed and direction. Lecture notes in statistics. Springer, Berlin Heidelberg

  • Coles S (1998) Inference for circular distributions and processes. Stat Comput 8(2):105–113

    Article  Google Scholar 

  • Coles S, Casson E (1998) Extreme value modelling of hurricane wind speeds. Struct Saf 20(3):283–296

    Article  Google Scholar 

  • Damien P, Walker S (1999) A full Bayesian analysis of circular data using the von Mises distribution. Can J Stat 27:291–298

    Article  Google Scholar 

  • Engel C, Ebert E (2007) Performance of hourly operational consensus forecasts (OCFs) in the australian region. Weather Forecast 22(6):1345–1359

    Article  Google Scholar 

  • Fisher N, Lee A (1994) Time series analysis of circular data. J R Stat Soc Ser B 56(327):332

    Google Scholar 

  • Fisher NI (1996) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Fisher NI, Lee AJ (1992) Regression models for an angular response. Biometrics 48(3):665–677

    Article  Google Scholar 

  • Grimit EP, Gneiting T, Berrocal VJ, Johnson NA (2006) The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart J R Meteorol Soc 132(621C):2925–2942

    Article  Google Scholar 

  • Guttorp P, Lockhart RA (1988) Finding the location of a signal: a Bayesian analysis. J Am Stat Assoc 83(402):322–330

    Article  Google Scholar 

  • Harrison D, Kanji GK (1988) The development of analysis of variance for circular data. J Appl Stat 15:197–224

    Article  Google Scholar 

  • Hernández-Sánchez E, Scarpa B (2012) A wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind direction. Chil J Stat 3(2):129–141

    Google Scholar 

  • Holzmann H, Munk A, Suster M, Zucchini W (2006) Hidden Markov models for circular and linear-circular time series. Environ Ecol Stat 13(3):325–347

    Article  Google Scholar 

  • Hughes G (2007) Multivariate and time series models for circular data with applications to protein conformational angles. PhD thesis, University of Leeds, Leeds

  • Jammalamadaka S, Sarma Y (1988) A correlation coefficient for angular variables. Stat Theory Data Anal II:349–364

    Google Scholar 

  • Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Book  Google Scholar 

  • Jona Lasinio G, Gelfand A, Jona Lasinio M (2012) Spatial analysis of wave direction data using wrapped Gaussian processes. Ann Appl Stat 6(4):1478–1498

    Article  Google Scholar 

  • Kato S (2010) A Markov process for circular data. J R Stat Soc Ser B (Stat Methodol) 72(5):655–672

  • Kato S, Shimizu K (2008) Dependent models for observations which include angular ones. J Stat Plan Inference 138(11):3538–3549

    Article  Google Scholar 

  • Kato S, Shimizu K, Shieh GS (2008) A circular-circular regression model. Stat Sin 18:633–645

    Google Scholar 

  • Kim HM, Mallick BK (2004) A Bayesian prediction using the skew gaussian distribution. J Stat Plan Inference 120(1–2):85–101

    Article  Google Scholar 

  • Lagona F, Picone M, Maruotti A, Cosoli S (2015) A hidden Markov approach to the analysis of space–time environmental data with linear and circular components. Stoch Environ Res Risk Assess 29(2):397–409

    Article  Google Scholar 

  • Ma Y, Genton MG (2004) A flexible class of skew-symmetric distributions. Scand J Stat 31:459–468

    Article  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London, New York

    Google Scholar 

  • Mardia KV, Jupp PE (1999) Directional statistics. Wiley, Chichcster

    Book  Google Scholar 

  • Mastrantonio G, Jona Lasinio G, Gelfand AE (2015) Spatio-temporal circular models with non-separable covariance structure. TEST To appear

  • Minozzo M, Ferracuti L (2012) On the existence of some skew-normal stationary process. Chil J Stat 3(2):157–170

    Google Scholar 

  • Nuñez-Antonio G, Gutiérrez-Peña E (2005) A Bayesian analysis of directional data using the projected normal distribution. J Appl Stat 32(10):995–1001

    Article  Google Scholar 

  • Pewsey A (2000) The wrapped skew-normal distribution on the circle. Commun Stat 29(11):2459–2472

    Article  Google Scholar 

  • Pewsey A (2006) Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Environ Ecol Stat 13(3):257–269

    Article  Google Scholar 

  • Presnell B, Morrison SP, Littell RC (1998) Projected multivariate linear models for directional data. J Am Stat Assoc 93(443):1068–1077

    Article  Google Scholar 

  • Ravindran P, Ghosh SK (2011) Bayesian analysis of circular data using wrapped distributions. J Stat Theory Pract 5(4):547–561

    Article  Google Scholar 

  • Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to bayesian regression models. Can J Stat 31(2):129–150

    Article  Google Scholar 

  • Speranza A, Accadia C, Casaioli M, Mariani S, Monacelli G, Inghilesi R, Tartaglione N, Ruti PM, Carillo A, Bargagli A, Pisacane G, Valentinotti F, Lavagnini A (2004) Poseidon: an integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area. Nuovo Cimento 27(C):329–345

    Google Scholar 

  • Wang F, Gelfand AE (2013) Directional data analysis under the general projected normal distribution. Stat Methodol 10(1):113–127

    Article  Google Scholar 

  • Wang F, Gelfand AE (2014) Modeling space and space–time directional data using projected Gaussian processes. J Am Stat Assoc 109(508):1565–1580

    Article  CAS  Google Scholar 

  • Wang J, Boyer J, Genton MG (2004) A skew-symmetric representation of multivariate distributions. Stat Sin 14:1259–1270

    Google Scholar 

  • Zhang H, El-Shaarawi A (2010) On spatial skew-Gaussian processes and applications. Environmetrics 21(1):33–47

    CAS  Google Scholar 

  • Zhang Q, Snow Jones A, Rijmen F, Ip EH (2010) Multivariate discrete hidden Markov models for domain-based measurements and assessment of risk factors in child development. J Comput Gr Stat 19(3):746–765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Mastrantonio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrantonio, G., Gelfand, A.E. & Jona Lasinio, G. The wrapped skew Gaussian process for analyzing spatio-temporal data. Stoch Environ Res Risk Assess 30, 2231–2242 (2016). https://doi.org/10.1007/s00477-015-1163-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1163-9

Keywords

Navigation