Skip to main content
Log in

Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A maximum entropy-Gumbel-Hougaard copula (MEGHC) method has been proposed for monthly streamflow simulation. The marginal distributions of monthly streamflows are estimated through the maximum entropy (ME) method with the first four non-central moments (i.e. mean, standard deviation, skewness and kurtosis) being the constraints. The Lagrange multipliers in ME-based marginal distributions are determined using the conjugate gradient (CG) method which is of superlinear convergence, simple recurrence formula and less calculation. Then the joint distributions of two adjacent monthly streamflows are constructed using the Gumbel-Hougaard copula (GHC) method. The developed MEGHC method has been applied for monthly streamflow simulation in Xiangxi river, China. The goodness-of-fit statistical tests, consisting of K–S test, A–D test, RMSE and Rosenblatt transformation with Cramér von Mises statistic, show that the MEGHC method can reflect dependence structure in adjacent monthly streamflows of Xiangxi river, China. Comparison between simulated streamflow generated by MEGHC and observations indicates the satisfactory performance of MEGHC with small relative errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AghaKouchak A, Nakhjiri N, Habib E (2013) An educational model for ensemble streamflow simulation and uncertainty analysis. Hydrol Earth Syst Sci 17(2):445–452

    Article  Google Scholar 

  • Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic streamflow generation. Water Resour Manage 21(6):1015–1029. doi:10.1007/s11269-006-9070-y

    Article  Google Scholar 

  • Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49(268):765–769. doi:10.1080/01621459.1954.10501232

    Article  Google Scholar 

  • Arshad M, Rasool MT, Ahmad MI (2003) Anderson Darling and modified Anderson Darling tests for generalized Pareto distribution. Pakistan J Appl Sci 3(2):85–88. doi:10.3923/jas.2003.85.88

    Google Scholar 

  • Boucher M, Perreault L, Anctil F (2009) Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J Hydroinformatics 11(3–4):297–307. doi:10.2166/hydro.2009.037

    Article  Google Scholar 

  • Butts MB, Payne JT, Kristensen M et al (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298(1):242–266. doi:10.1016/j.jhydrol.2004.03.042

    Article  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics, 3rd edn. John Wiley & Sons, Inc., New York, pp 428–433

    Google Scholar 

  • Diao YF, Wang BD, Liu J (2007) Study on distribution of flood forecasting errors by the method based on maximum entropy. J Hydraul Eng 38(5):591–595

    Google Scholar 

  • Dupuis DJ (2007) Using copulas in hydrology: benefits, cautions, and issues. J Hydrol Eng 12(4):381–393. doi:10.1061/(ASCE)1084-0699(2007)12:4(381)

    Article  Google Scholar 

  • Dutta D, Welsh WD, Vaze J et al (2012) A comparative evaluation of short-term streamflow forecasting using time series analysis and rainfall-runoff models in water source. Water Resour Manage 26(15):4397–4415. doi:10.1007/s11269-012-0151-9

    Article  Google Scholar 

  • Fan YR, Huang GH, Guo P et al (2012) Inexact two-stage stochastic partial programming: application to water resources management under uncertainty. Stochastic Environ Res Risk Assess 26(2):281–293. doi:10.1007/s00477-011-0504-6

    Article  Google Scholar 

  • Farrel PJ, Stewart KR (2006) Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test. J Stat Comput Simul 76(9):803–816. doi:10.1080/10629360500109023

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: Properties and pitfalls. Insur Math Econ 37:80–100. doi:10.1016/j.insmatheco.2005.05.008

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur Math Econ 44:199–213. doi:10.1016/j.insmatheco.2007.10.005

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68:813–814. doi:10.1029/JZ068i003p00813

    Article  Google Scholar 

  • Han JC, Huang GH, Zhang H et al (2013) Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stochastic Environ Res Risk Assess 1–17

  • Hao Z, Singh VP (2011) Single-site monthly streamflow simulation using entropy theory. Water Resour Res 47(9):W09528. doi:10.1029/2010WR010208

    Google Scholar 

  • Hao Z, Singh VP (2012) Entropy-copula method for single-site monthly streamflow simulation. Water Resour Res 48(6):W06604. doi:10.1029/2011WR011419

    Google Scholar 

  • Hu Q, Huang GH, Liu Z, Fan Y, Li W (2012) Inexact fuzzy two-stage programming for water resources management in an environment of fuzziness and randomness. Stochastic Environ Res Risk Assess 26(1):72–86

    Google Scholar 

  • Hwang Y, Clark MP, Rajagopalan B (2011) Use of daily precipitation uncertainties in streamflow simulation and forecast. Stochastic Environ Res Risk Assess 25(7):957–972. doi:10.1007/s00477-011-0460-1

    Article  Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics. Phys Rev 106(4):620. doi:10.1103/PhysRev.106.620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics. II. Phys Rev 108(2):171. doi:10.1103/PhysRev.108.171

    Article  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum-entropy methods. Proc IEEE 70(9):939–952. doi:10.1109/PROC.1982.12425

    Article  Google Scholar 

  • Jing L, Chen B (2011) Field investigation and hydrological modelling of a subarctic wetland-the Deer River Watershed. J Environ Inf 17(1):36–45. doi:10.3808/jei.201100185

    Article  Google Scholar 

  • Joe H, Xu JJ (1996) The estimation method of inference functions for margins for multivariate models. Technical Report

  • Kahya E, Kalaycı S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289(1):128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Kapur JN, Kesavan HK (1992) Entropy optimization principles with applications. Academic Press, New York

    Google Scholar 

  • Karmakar S, Simonovic SP (2007) Flood frequency analysis using copula with mixed marginal distributions, Water Resources Research Report, The University of Western Ontario Department of Civil and Environmental Engineering

  • Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. Giornale dell’ Instituto Italiano degli Attuari 4:83–91

    Google Scholar 

  • Lee T, Ouarda T. (2012) Stochastic simulation of nonstationary oscillation hydroclimatic processes using empirical mode decomposition. Water Resour Res 48(2). doi:10.1029/2011WR010660

  • Lee T, Salas JD (2011) Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol Res 42(4):318–330. doi:10.2166/nh.2011.085

    Article  Google Scholar 

  • Li HS (2013) Maximum entropy method for probabilistic bearing strength prediction of pin joints in composite laminates. Compos Struct 106:626–634. doi:10.1016/j.compstruct.2013.05.040

    Article  Google Scholar 

  • Li YP, Huang GH, Nie SL (2007) Mixed interval-fuzzy two-stage integer programming and its application to flood-diversion planning. Eng Optim 39(2):163–183. doi:10.1080/03052150601044831

    Article  Google Scholar 

  • Li YP, Huang GH, Nie SL et al (2008) Inexact multistage stochastic integer programming for water resources management under uncertainty. J Environ Manage 88(1):93–107. doi:10.1016/j.jenvman.2007.01.056

    Article  CAS  Google Scholar 

  • Liang ZM, Guo Y, Hu YM, Tang CY (2012) Impact of the pre-release from Three Gorges reservoir on flood control in Poyang Lake using a copula-based approach. Adv Water Sci 23(4):485–491

    Google Scholar 

  • Lv Y, Huang GH, Li YP et al (2010) Planning regional water resources system using an interval fuzzy Bi-level programming method. J Environ Inf 16(2):43–56. doi:10.3808/jei.201000177

    Article  Google Scholar 

  • Ma ZZ, Wang ZJ, Xia T, Gippel CJ, Speed R (2014) Hydrograph-based hydrologic alteration assessment and its application to the Yellow river. J Environ Inf 23(1):1–13. doi:10.3808/jei.201400252

    Article  Google Scholar 

  • Maceira MEP, Damázio JM, Ghirardi AO et al (1999) Periodic ARMA models applied to weekly streamflow forecasts. In: Proceedings of 1999 IEEE international conference on Electric Power Engineering. PowerTech Budapest, Hungary

  • Mahiny AS, Clarke KC (2013) Simulating hydrologic impacts of urban growth using SLEUTH, multi criteria evaluation and runoff modeling. J Environ Inf 22(1):27–38. doi:10.3808/jei.201300243

    Article  Google Scholar 

  • Marengo JA (1995) Variations and change in South American streamflow. Clim Change 31(1):99–117. doi:10.1007/BF01092983

    Article  Google Scholar 

  • Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78. doi:10.1080/01621459.1951.10500769

    Article  Google Scholar 

  • Nelsen RB (1997) Dependence and order in families of Archimedean copulas. J Multivariate Anal 60(1):111–122. doi:10.1006/jmva.1996.1646

    Article  Google Scholar 

  • Nelsen RB (1999) An introduction to copulas. Springer, New York

    Book  Google Scholar 

  • Nowak K, Prairie J, Rajagopalan B et al (2010) A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow. Water Resour Res 46(8). doi:10.1029/2009WR008530

  • Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12:394–403. doi:10.1061/(ASCE)1084-0699(2007)12:4(394)

    Article  Google Scholar 

  • Prairie JR (2006) Stochastic nonparametric framework for basin wide streamflow and salinity modeling: application for the Colorado River basin. Dissertation, University of Colorado

  • Razali NM, Wah YB (2011) Power comparisions of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Anal 2(1):21–33

    Google Scholar 

  • Requena AI, Mediero L, Garrote L (2013) A bivariate return period based on copulas for hydrologic dam design: Accounting for reservoir routing in risk estimation. Hydrol Earth Syst Sci 17:3023–3028. doi:10.5194/hess-17-3023-2013

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472. doi:10.1214/aoms/1177729394

    Article  Google Scholar 

  • Salas JD, Lee T (2009) Nonparametric simulation of single-site seasonal streamflows. J Hydrol Eng 15(4):284–296. doi:10.1061/(ASCE)HE.1943-5584.0000189

    Article  Google Scholar 

  • Samaniego L, Bárdossy A, Kumar R (2010) Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resour Res 46(2). doi:10.1029/2008WR007695

  • Scholz FW, Stephens MA (1987) K-sample Anderson-Darling tests. J Am Stat Assoc 82(399):918–924

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27(7):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  • Sharma A, O’Neill R (2002) A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resour Res 38(7):1100. doi:10.1029/2001WR000953

    Google Scholar 

  • Sharma A, Tarboton DG, Lall U (1997) Streamflow simulation: a nonparametric approach. Water Resour Res 33(2):291–308. doi:10.1029/96WR02839

    Article  Google Scholar 

  • Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain

  • SiiaNNON CE, Weaver W (1949) The mathematical theory of communication. Univ. Illinois 19(7):1

    Google Scholar 

  • Sim CH (1987) A mixed gamma ARMA (1, 1) model for river flow time series. Water Resour Res 23(1):32–36. doi:10.1029/WR023i001p00032

    Article  Google Scholar 

  • Singh VP (1997) The use of entropy in hydrology and water resources. Hydrol Process 11(6):587–626. doi:10.1002/(SICI)1099-1085(199705)11:6<587:AID-HYP479>3.0.CO;2-P

    Article  Google Scholar 

  • Singh VP (2011) Hydrologic synthesis using entropy theory: review. J Hydrol Eng 16(5):421–433. doi:10.1061/(ASCE)HE.1943-5584.0000332

    Article  Google Scholar 

  • Singh VP, Rajagopal AK (1986) A new method of parameter estimation for hydrologic frequency analysis. Hydrol Sci Technol 2(3):33–40

    Google Scholar 

  • Sivakumar B (2003) Forecasting monthly streamflow dynamics in the western United States: a nonlinear dynamical approach. Environ Model Software 18(8):721–728. doi:10.1016/S1364-8152(03)00074-4

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Stedinger JR, Lettenmaier DP, Vogel RM (1985) Multisite ARMA (1, 1) and disaggregation models for annual streamflow generation. Water Resour Res 21(4):497–509. doi:10.1029/WR021i004p00497

    Article  Google Scholar 

  • Su LY, Christensen P, Liu JL (2013) Comparative study of water resource management and policies for ecosystems in China and Denmark. J Environ Inf 21(1):72–83. doi:10.3808/jei.201300234

    Article  Google Scholar 

  • Tarboton DG, Sharma A, Lall U (1998) Disaggregation procedures for stochastic hydrology based on nonparametric density estimation. Water Resour Res 34(1):107–119. doi:10.1029/97WR02429

    Article  CAS  Google Scholar 

  • Vano JA, Udall B, Cayan DR et al (2013) Understanding uncertainties in future Colorado river streamflow. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-12-00228.1

    Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79. doi:10.3354/cr030079

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45(8):W08432. doi:10.1029/2007WR006737

    Google Scholar 

  • Xu JJ (1996) Statistical modelling and inference for multivariate and longitudinal discrete response data. Ph.D. thesis. Department of Statistics, University of British Columbia

  • Xu TY, Qin XS (2013) Solving water quality management problem through combined genetic algorithm and fuzzy simulation. J Environ Inf 22(1):39–48. doi:10.3808/jei.201300244

    Article  Google Scholar 

  • Xu H, Taylor RG, Kingston DG et al (2010) Hydrological modeling of River Xiangxi using SWAT2005: A comparison of model parameterizations using station and gridded meteorological observations. Quat Int 226(1):54–59. doi:10.1016/j.quaint.2009.11.037

    Article  Google Scholar 

  • Yakowitz SJ (1979) A nonparametric Markov model for daily river flow. Water Resour Res 15(5):1035–1043. doi:10.1029/WR015i005p01035

    Article  Google Scholar 

  • Yang AL, Huang GH, Qin XS, Fan YR (2012) Evaluation of remedial options for a benzene-contaminated site through a simulation-based fuzzy-MCDA approach. J Hazard Mater 213:421–433. doi:10.1016/j.jhazmat.2012.02.027

    Article  Google Scholar 

  • Ye A, Duan Q, Yuan X et al (2014) Hydrologic post-processing of MOPEX streamflow simulations. J Hydrol 508:147–156. doi:10.1016/j.jhydrol.2013.10.055

    Article  Google Scholar 

  • Yu KX, Xiong LH, Gottschalk L (2014) Derivation of low flow distribution functions using copulas. J Hydrol 508:273–288. doi:10.1016/j.jhydrol.2013.09.057

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12(4):409–419. doi:10.1061/(ASCE)1084-0699(2007)12:4(409)

    Article  Google Scholar 

  • Zhang L, Singh VP (2012) Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 14:1784–1812. doi:10.2290/e14091784

    Article  Google Scholar 

  • Zhao G, Hörmann G, Fohrer N et al (2010) Streamflow trends and climate variability impacts in Poyang Lake Basin, China. Water Resour Manage 24(4):689–706. doi:10.1007/s11269-009-9465-7

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Nos. 51190095 and 51225904), the National Basic Research Program (2013CB430406, 2013CB430401), the 111 Project (B14008), the Program for Innovative Research Team in University (IRT1127) and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Appendices

Appendix 1: A bootstrap procedure for CG method

The method of CG is presented as follows:

  1. (1)

    Starting from some initial value λ (0);

  2. (2)

    Let the initial value of search direction d (0):

    $$ d_{(0)} = - g_{(0)} = - \frac{{\partial f\left( {\lambda_{\left( 0 \right)} } \right)}}{{\partial \lambda_{(0)i} }}\quad (i = 1, \, 2, \, \ldots \, , \, m) $$

    where f(·) is the objective function; g (0) is the gradient of f(λ (0)); m is the size of random variable λ (·).

  3. (3)

    For steps k = 0, 1, …, n−1, calculate:

    $$ f(\lambda_{(k)} + \alpha_{(k)} d_{(k)} ) = \hbox{min} f(\lambda_{(k)} + \alpha d_{(k)} ) $$
    $$ \lambda_{(k + 1)} = \lambda_{(k)} + \alpha_{(k)} d_{(k)} $$
    $$ g_{\left( k \right)} = \nabla f\left( {\lambda_{\left( k \right)} } \right) $$
    $$ \beta_{(k)} = \frac{{g_{(k + 1)}^{T} (g_{(k + 1)} - g_{(k)} )}}{{\left\| {g_{(k)} } \right\|_{2}^{2} }} $$
    $$ d_{(k + 1)} = - g_{(k + 1)} + \beta_{(k)} d_{(k)} $$

    where g (k) is gradient of f(λ (k)); α, α (k) and β (k) are parameters of step k; d (k+1) is the search direction of step k + 1.

Appendix 2: The effectiveness of empirical distribution generated by Gringorten plotting position formula

See Fig. S1.

Appendix 3: A parametric bootstrap procedure for P value of statistic S (B) n

The procedure for determining P value of statistic S (B) n is presented as follows:

  1. (1)

    Compute empirical distribution D n and parameter θ;

  2. (2)

    Compute the test statistic S (B) n ;

  3. (3)

    For steps k = 1, 2,…, N (N is a large integer), calculate:

    $$ {\mathbf{U}}_{i,k}^{*} = {\mathbf{R}}_{i,k}^{*} / ({n + 1}), \quad i = 1,2,\ldots,n $$
    $$ {\mathbf{E}}_{i,k}^{*} = \Re_{\theta_{i,k}^{*}} ({{\mathbf{U}}_{i,k}^{*}}), \quad i = 1,2,\ldots,n $$
    $$ D_{{n,k}}^{*} \left( {\mathbf{u}} \right) = \frac{1}{n}\sum\limits_{{i = 1}}^{n} 1 ({\mathbf{E}}_{{i,k}}^{*} \le {\mathbf{u}}),\quad {\mathbf{u}} \in [0,1] $$
    $$ S_{n}^{( B)*}=n \int_{0}^{1} {\left\{ {D_{n,k}^{*}({{\mathbf{E}}_{i,k}^{*}})-C_{\bot} ({{\mathbf{E}}_{i,k}^{*}})} \right\}^{2} d{\mathbf{E}}_{i,k}^{*}} $$
    $$ P value^{{\left[ {Cramer - vom\,\, Mise} \right]}} = \frac{1}{N}\sum\limits_{{k = 1}}^{N} {\left\{ {1\left( {S_{{n,k}}^{{\left( B \right)*}} - S_{n}^{{\left( B \right)}} } \right) \ge\, 0} \right\}} $$

    where R *1,k R *2,k ,…, R * n,k are ran vectors which are associated with the random sample Y *1,k Y *2,k ,…,Y * n,k from \( C_{{\theta_{n} }} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X.M., Huang, G.H., Fan, Y.R. et al. Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China. Stoch Environ Res Risk Assess 29, 833–846 (2015). https://doi.org/10.1007/s00477-014-0978-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0978-0

Keywords

Navigation