Skip to main content

Advertisement

Log in

Assessment of future precipitation indices in the Shikoku region using a statistical downscaling model

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this study, we used the statistical downscaling model (SDSM) to estimate mean and extreme precipitation indices under present and future climate conditions for Shikoku, Japan. Specifically, we considered the following mean and extreme precipitation indices: mean daily precipitation, R10 (number of days with precipitation >10 mm/day), R5d (annual maximum precipitation accumulated over 5 days), maximum dry-spell length (MaDSL), and maximum wet-spell length (MaWSL). Initially, we calibrated the SDSM model using the National Center for environmental prediction (NCEP) reanalysis dataset and daily time series of precipitation for ten locations in Shikoku which were acquired from the surface weather observation point dataset. Subsequently, we used the validated SDSM, using data from NCEP and outputs form general circulation models (GCM), to predict future precipitation indices. Specifically, the HadCM3 GCM was run under the special report on emissions scenarios (SRES) A2 and B2 scenarios, and the CGCM3 GCM was run under the SRES A2 and A1B scenarios. The results showed that: (1) the SDSM can reasonably be used to simulate mean and extreme precipitation indices in the Shikoku region; (2) the values of annual R10 were predicated to decrease in the future in northern Shikoku under all climate scenarios; conversely, the values of annual R10 were predicted to increase in the future in the range of 0–15 % in southern and western Shikoku. The values of annual MaDSL were predicted to increase in northern Shikoku, and the values of annual MaWSL were predicted to decrease in northeastern Shikoku; (3) the spatial variation of precipitation indices indicated the potential for an increased occurrence of drought across northeastern Shikoku and an increased occurrence of flood events in the southwestern part of Shikoku, especially under the A2 and A1B scenarios; (4) characteristics of future precipitation may differ between the northern and southern sides of the Shikoku Mountains. Regional variations in extreme precipitation indices were not notably evident in the B2 scenario compared to the other scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artlert K, Chaleeraktrakoon C, Nguyen VTV (2013) Modeling and analysis of rainfall processes in the context of climate change for Mekong, Chi, and Mun River Basins (Thailand). J Hydro Environ Res 7:2–17. doi:10.1016/j.jher.2013.01.001

    Article  Google Scholar 

  • Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods to find couples patterns in climate data. J Clim 5:541–560. doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2

    Article  Google Scholar 

  • Carter T, Posch M and Tuomenvirta, H (1995) SILMUSCEN and CLIGEN user’s guide. Guidelines for the construction of climatic scenarios and use of a stochastic weather generator in the Finnish Research Programme on Climate Change (SILMU). Publications of the Academy of Finland, 1/95, 62 pp

  • Chen YD, Chen X, Xu CY, Shao Q (2006) Downscaling of daily precipitation with a stochastic weather generator for the subtropical region in South China. Hydrol Earth Syst Sci Discuss 3:1145–1183. doi:10.5194/hessd-3-1145-2006

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatididis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River. China. Theor Appl Climatol 99:149–161. doi:10.1007/s00704-009-0129-6

    Article  Google Scholar 

  • Coulibaly P (2004) Downscaling daily extreme temperature with genetic programming. Geophys Res Lett 31:L16203. doi:10.1029/2004GL020075

    Article  Google Scholar 

  • Crane RG, Hewitson BC (1998) Doubled CO2 precipitation changes for the Susquehanna Basin: downscaling from the GENESIS general circulation model. Int J Clim 18:65–76. doi:10.1002/(SICI)1097-0088(199801)18:1<65:AID-JOC222>3.0.CO;2-9

    Article  Google Scholar 

  • DAI CGCM3 Predictors (2008) Sets of predictor variables derived from CGCM3 T47 and NCEP/NCAR Reanalysis. Version 1.1, April 2008, Montreal, pp 1–16

  • Denis B, Laprise R, Caya D, Côté J (2002) Downscaling ability of one way nested regional climate models: the Big-Brother experiment. Clim Dynam 18:627–646. doi:10.1007/s00382-001-0201-0

    Article  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom. Clim Change 69:245–268. doi:10.1007/s10584-005-1157-6

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163. doi:10.1016/j.jhydrol.2004.10.012

    Article  Google Scholar 

  • Fowler HJ, Kilsby CG (2003) Implications of changes in seasonal and annual extreme rainfall. Geophys Res Lett 30:1720. doi:10.1029/2003GL017327

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Franchini M, Helmlinger KR, Foufoula-Georgiou E, Todini E (1996) Stochastic storm transposition coupled with rainfall-runoff modeling for estimation of exceedance probabilities of design floods. J Hydrol 175:511–532. doi:10.1016/S0022-1694(96)80022-9

    Article  Google Scholar 

  • Gachon P, Dibike Y (2007) Temperature change signals in northern Canada: convergence of statistical downscaling results using two driving GCMs. Int J Climatol 27:1623–1641. doi:10.1002/joc.1582

    Article  Google Scholar 

  • Goodess CM, Palutikof JP (1998) Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int J Climatol 18:1050–1083. doi:10.1002/(SICI)1097-0088(199808)18:10<1051:AID-JOC304>3.0.CO;2-1

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) Simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dynam 16:147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011a) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess 25:475–484. doi:10.1007/s00477-010-0416-x

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011b) Statistical downscaling of watershed precipitation using gene expression programming (GEP). Environ Model Softw 26:1639–1646. doi:10.1016/j.envsoft.2011.07.007

    Article  Google Scholar 

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26:1397–1415. doi:10.1002/joc.1318

    Article  Google Scholar 

  • Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire A (2008) Automated regression-based statistical downscaling tool. Environ Model Softw 23:813–834. doi:10.1016/j.envsoft.2007.10.004

    Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu CY, Wang B, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Environ Res Risk Assess 25:781–792. doi:10.1007/s00477-010-0441-9

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Sun S, Yao J (2012) Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theor Appl Climatol 108:325–343. doi:10.1007/s00704-011-0536-3

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 881 pp

  • IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC (Eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt M, Tignor M, Miller HL). Cambridge University Press, Cambridge, 996 pp

  • Japan Meteorological Agency (2010) Climate change monitoring report. http://www.data.kishou.go.jp/climate/cpdinfo/monitor/2010/pdf/ccmr2010_chap1.pdf. Accessed 11 Jan 2013

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods. J Hydrol 319:357–382. doi:10.1016/j.jhydrol.2005.06.035

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu V, Kousky M, van den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

    Article  Google Scholar 

  • Lenderink G, Ulden AV, Hurk BVD, Keller F (2007) A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim Dynam 29:157–176. doi:10.1007/s00382-007-0227-z

    Article  Google Scholar 

  • Maak K, Storch HV (1997) Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany. Int J Biometeorol 41:5–12. doi:10.1007/s004840050046

    Article  Google Scholar 

  • Mendes D, Marengo JA (2010) Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theor Appl Climatol 100:413–421. doi:10.1007/s00704-009-0193-y

    Article  Google Scholar 

  • Ministry of Land, Infrastructure, Transport and Tourism (2010) Climate change report of Shikoku. http://www.skr.mlit.go.jp/kikaku/mizu/pdf/15_jimu01.pdf (in Japanese) Accessed 21 Jan 2013

  • Nguyen VTV, Nguyen TD, Gachon P (2006) On the linkage of large-scale climate variability with local characteristics of daily precipitation and temperature extremes: an evaluation of statistical downscaling methods. Adv Geosci (WSPC/SPI-B368) 4:1–9

    Article  Google Scholar 

  • Nishimori M (2003) Projections of water resource change in Asia in the 21st century. http://www.mri-jma.go.jp/Project/water_resource/outcomes/mizushigen/water2_2_4.pdf (in Japanese). Accessed 7 Jan 2013

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dynam 16:123–146. doi:10.1007/s003820050009

    Article  Google Scholar 

  • Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Clim Change 93:177–195. doi:10.1007/s10584-008-9464-3

    Article  Google Scholar 

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrolog Process 16:1137–1150. doi:10.1002/hyp.1054

    Article  Google Scholar 

  • Racksko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Eco Model 57:27–41. doi:10.1016/0304-3800(91)90053-4

    Article  Google Scholar 

  • Raje D, Mujumdar PP (2011) A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrol Process 23:3575–3589. doi:10.1002/hyp.8083

    Article  Google Scholar 

  • Schnur R, Lettenmaier D (1998) A case study of statistical downscaling in Australia using weather classification by recursive partitioning. J Hydrol 212–213:362–379. doi:10.1016/S0022-1694(98)00217-0

    Article  Google Scholar 

  • Schoof JT, Pryor SC (2001) Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int J Climatol 21:773–790. doi:10.1002/joc.655

    Article  Google Scholar 

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35:397–414. doi:10.1023/A:1005342632279

    Article  Google Scholar 

  • Sunmin K, Nakakita E, Tachikawa Y, Takara K (2010) Precipitation changes in Japan under the A1B climate change scenario. Ann J Hydraul Eng 54:127–132

    Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu CY (2006) Daily precipitation-downscaling techniques in three Chinese regions. Water Resour Res 42:W11423. doi:10.1029/2005WR004573

    Google Scholar 

  • Wilby RL, Dwason CW (2007) SDSM4.2—A decision support tool for the assessment of regional climate change impacts. User Manual, pp 1–94

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios. Water Resour Res 42:W0419. doi:10.1029/2005WR004065

    Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewiston BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008. doi:10.1029/98WR02577

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM: a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157. doi:10.1016/S1364-8152(01)00060-3

    Article  Google Scholar 

  • Wilks DS (1992) Adapting stochastic weather generation algorithms for climate change studies. Clim Change 22:67–84. doi:10.1007/BF00143344

    Article  Google Scholar 

  • Wise EK (2009) Climate-based sensitivity of air quality to climate change scenarios for the southwestern United States. Int J Climatol 29:87–97. doi:10.1002/joc.1713

    Article  Google Scholar 

  • Zorita E, Storch HV (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489. doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Tatsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsumi, K., Oizumi, T. & Yamashiki, Y. Assessment of future precipitation indices in the Shikoku region using a statistical downscaling model. Stoch Environ Res Risk Assess 28, 1447–1464 (2014). https://doi.org/10.1007/s00477-014-0847-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0847-x

Keywords

Navigation