Skip to main content

Advertisement

Log in

A P-spline ANOVA type model in space-time disease mapping

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

One of the main objectives in disease mapping is the identification of temporal trends and the production of a series of smoothed maps from which spatial patterns of mortality risks can be monitored over time. When studying rare diseases, conditional autoregressive models have been commonly used for smoothing risks. In this work, a P-spline ANOVA type model is used instead. The model is anisotropic and explicitly considers different smooth terms for space, time, and space-time interaction avoiding, in addition, model identifiability problems. The mean squared error of the log-risk predictor is derived accounting for the variability associated to the estimation of the smoothing parameters. The procedure is illustrated analyzing Spanish prostate cancer mortality data in the period 1975–2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baade PD, Youlden DR, Krnjacki LJ (2009) International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res 53:171–184

    Article  CAS  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration with two applications in spatial statistics, Ann Inst Stat Math 43:1–59

    Article  Google Scholar 

  • Bernardinelli L, Clayton D, Pascutto C, Montomoli C, Ghislandi M, Songini M (1995) Bayesian analysis of space-time variation in disease risk. Stat Med 14:2433–2443

    Article  CAS  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88: 9–25

    Article  Google Scholar 

  • Cabanes A, Vidal E, Aragonés N, Pérez-Gómez B, Pollán M, Lope V, López-Abente G (2010) Cancer mortality trends in Spain: 1980–2007. Ann Oncol 21(3):14–20

    Article  Google Scholar 

  • Cabanes A, Pérez-Gómez B, Aragonés N, Pollán M, López-Abente G (2009) The situation of cancer in Spain, 1975–2006 (In Spanish). Instituto de Salud Carlos III. Madrid

  • Cayuela A, Rodriguez-Dominguez S, Vigil-Martin E, Barrero-Candau BR (2008) Cambios recientes en la mortalidad por cáncer de próstata en España: estudio de tendencias en el periodo 1991–2005. Actas Urol Esp 32:184–189

  • Chen Z (1993) Fitting multivariate regression functions by interactions spline models. J R Stat Soc B 55: 473-491

    Google Scholar 

  • Das K, Jiang J, Rao JNK (2004) Mean squared error of empirical predictor. Ann Stat 32:818–840

    Article  Google Scholar 

  • Dean CB, Ugarte MD, Militino AF (2004) Penalized quasi-likelihood with spatially correlated data. Comput Stat Data Anal 45:235–248

    Article  Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer, Berlin

  • Eilers PHC, Currie ID, Durbán M (2006) Fast and compact smoothing on large multidimensional grids. Comput Stat Data Anal 50:61–76

    Article  Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121

    Article  Google Scholar 

  • Escaramís G, Carrasco JL, Ascaso C (2008) Detection of significant disease risks using a spatial conditional autoregressive model. Biometrics 64:1043–1053

    Article  Google Scholar 

  • Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN 2002 (2004) Cancer incidence, mortality and prevalence worldwide. IARC CancerBase No. 5. version 2.0. IARC, Lyon

  • Gu C (2002) Smoothing spline ANOVA models. Springer, New York

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72:320–340

    Google Scholar 

  • Kackar R and Harville DA (1984) Approximations for standard errors of estimators of fixed and random effects in mixed linear models. J Am Stat Assoc 79:853–862

    Google Scholar 

  • Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19:2555–2567

    Article  CAS  Google Scholar 

  • Knorr-Held L, Besag J (1998) Modelling risk from a disease in time and space. Stat Med 17:2045–2060

    Article  CAS  Google Scholar 

  • Larrañaga N, Galceran J, Ardanaz E, Navarro C, Sánchez MJ, Pastor-Berriuso R. (2010) Prostate cancer incidence trends in Spain before and during the prostate-specific antigen era: impact on mortality. Ann Oncol 21(3):83–89

    Article  Google Scholar 

  • Lee DJ (2010) Smoothing mixed models for spatial and spatio-temporal data Ph-D Thesis, Carlos III University, Madrid. http://e-archivo.uc3m.es/browse?type=author&value=Lee+Hwang%2C+Dae-Jin

  • Lee DJ, Durbán M (2011) P-spline ANOVA-type interaction models for spatio-temporal smoothing. Stat Model 11:49–69

    Article  Google Scholar 

  • MacNab YC and Dean CB (2001) Autoregressive spatial smoothing and temporal spline smoothing for mapping rates. Biometrics 57:949–956

    Article  CAS  Google Scholar 

  • MacNab YC and Dean CB (2002) Spatio-temporal modelling of rates for the construction of disease maps. Stat Med 21:347–358

    Article  Google Scholar 

  • Martínez-Beneito MA, López-Quílez A, Botella-Rocamora P (2008) An autoregressive approach to spatio-temporal disease mapping. Stat Med 27:2874–2889

    Article  Google Scholar 

  • Opsomer JD, Claeskens G, Ranalli MG, Kauermann G, Breidt FJ (2008) Non-parametric small area estimation using penalized spline regression. J R Stat Soc B 70:265–286

    Article  Google Scholar 

  • Parkin DM, Whelan P, Ferlay J, Storm H (2005) Cancer incidence in five continents Vols. I–VIII. IARC Cancer Base No. 7. IARC, Lyon

  • Prasad NGN, Rao JNK (1990) The estimation of mean squared error of small area estimators. J Am Stat Assoc 85:163–171

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org/

  • Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, New York

  • Ruppert D, Wand MP, Carroll RJ (2009) Semiparametric regression during 2003–2007. Electron J Stat 3:1193–1256

    Article  Google Scholar 

  • Schall R (1991) Estimation in generalized linear models with random effects. Biometrika 78:719-727

    Article  Google Scholar 

  • Singh BB, Shukla GK, Kundu D (2005) Spatio-temporal models in small area estimation. Surv Methodol 31:183–195

    Google Scholar 

  • Tiefelsdorf M (2007) Controlling for migration effects in ecological disease mapping of prostate cancer. Stoch Environ Res Risk Asses 21:615–624

    Article  Google Scholar 

  • Ugarte MD (2009) Mortality. In: Kattan MW (ed) Encyclopedia of medical decision making, vol. 2. SAGE, Thousand Oaks, pp 788–792

  • Ugarte MD, Goicoa T, Militino AF (2010) Spatio-temporal modelling of mortality risks using penalized splines. Environmetrics 21:270–289

    Article  Google Scholar 

  • Ugarte MD, Militino AF, Goicoa T (2008) Prediction error estimators in empirical Bayes disease mapping. Environmetrics 19:287–300

    Article  Google Scholar 

  • Waller LA, Carlin BP, Xia H, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Google Scholar 

  • Wood SN (2006) Low-Rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62:1025–1036

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Spanish Ministry of Science and Innovation, project MTM2008-03085, and project MTM2011-22664, which is co-funded by FEDER. The authors would like to thank to Marina Pollán from the National Epidemiology Center (area of Environmental Epidemiology and Cancer) for providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ugarte.

Appendix

Appendix

In this section, detailed expressions for \({{\partial{\bf G}}\over {\partial\lambda_j}}\) and \({{\partial{\bf V}^{-1}}\over {\partial\lambda_j}}\) are provided.

$${\frac{\partial{\mathbf G}}{\partial\lambda_j}}= {\frac{\partial{\mathbf F}^{-1}}{\partial\lambda_j}}= -{\mathbf F}^{-1}{\frac{\partial{\mathbf F}}{\partial\lambda_j}}{\mathbf F}^{-1},\\ {\frac{\partial{\mathbf V}^{-1}}{\partial\lambda_j}} = -{\mathbf V}^{-1}{\frac{\partial{\mathbf V}}{\partial\lambda_j}}{\mathbf V}^{-1}={\mathbf V}^{-1}{\mathbf Z}{\mathbf F}^{-1}{\frac{\partial{\mathbf F}}{\partial\lambda_j}}{\mathbf F}^{-1}{\mathbf Z}'{\mathbf V}^{-1}.$$

In this model there are six variance components corresponding to the smoothing parameters of the ANOVA type model

$$ {{\varvec{\uplambda}}}=(\lambda_1,\lambda_2,\lambda_t,\tau_1,\tau_2,\tau_t)', $$

and then

$$ \frac{\partial{\bf F}}{\partial\lambda_j}=\hbox{diag} \left(\frac{\partial{\bf F}_{1}}{\partial\lambda_j}, \frac{\partial{\bf F}_{2}}{\partial\lambda_j},\frac{\partial{\bf F}_{3}}{\partial\lambda_j},\frac{\partial{\bf F}_{4}} {\partial\lambda_j}, \frac{\partial{\bf F}_{5}} {\partial\lambda_j},\frac{\partial{\bf F}_{6}} {\partial\lambda_j},\frac{\partial{\bf F}_{7}} {\partial\lambda_j}, \frac{\partial{\bf F}_{8}} {\partial\lambda_j},\frac{\partial{\bf F}_{9}} {\partial\lambda_j},\frac{\partial{\bf F}_{10}} {\partial\lambda_j},\frac{\partial{\bf F}_{11}} {\partial\lambda_j} \right), $$

with λ j denoting the jth component of λ.

$$ \begin{aligned} & {{\partial{\bf F}_{1}}\over {\partial\lambda_1}} = {\bf 0}, \quad {{\partial{\bf F}_{1}}\over {\partial\lambda_2}} = \widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{2}, \quad {{\partial{\bf F}_{1}}\over {\partial\lambda_t}} = {{\partial{\bf F}_{1}}\over {\partial\tau_i}} = {\bf 0}, \\ & {{\partial{\bf F}_{2}}\over {\partial\lambda_1}} = {\bf I}_{2}\otimes\widetilde{{\bf{\Upsigma}}}_1, \quad {{\partial{\bf F}_{2}}\over {\partial\lambda_2}} = {{\partial{\bf F}_{2}}\over {\partial\lambda_t}} = {{\partial{\bf F}_{2}}\over {\partial\tau_i}} = {\bf 0}, \\ & {{\partial{\bf F}_{3}}\over {\partial\lambda_1}} ={\bf I}_{c_2-2}\otimes\widetilde{{\bf{\Upsigma}}}_1, \quad {{\partial{\bf F}_{3}}\over {\partial\lambda_2}} =\widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{c_1-2}, \quad {{\partial{\bf F}_{3}}\over {\partial\lambda_t}} = {{\partial{\bf F}_{3}}\over {\partial\tau_i}} = {\bf 0}, \\ & {{\partial{\bf F}_{4}}\over {\partial\lambda_1}} = {{\partial{\bf F}_{4}}\over {\partial\lambda_2}} = {\bf 0},\quad {{\partial{\bf F}_{4}}\over {\partial\lambda_t}} = \widetilde{{\bf{\Upsigma}}}_3, \quad {{\partial{\bf F}_{4}}\over {\partial\tau_i}} = {\bf 0}, \\ & {{\partial{\bf F}_{5}}\over {\partial\lambda_i}} = {{\partial{\bf F}_{5}}\over {\partial\tau_1}} = {\bf 0},\quad {{\partial{\bf F}_{5}}\over {\partial\tau_2}} = \widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{2},\quad {{\partial{\bf F}_{5}}\over {\partial\tau_t}} = {\bf 0}, \\ & {{\partial{\bf F}_{6}}\over {\partial\lambda_1}} = {{\partial{\bf F}_{6}}\over {\partial\lambda_2}} = {{\partial{\bf F}_{6}}\over {\partial\lambda_t}} = {\bf 0},\quad {{\partial{\bf F}_{6}}\over {\partial\tau_1}} = {\bf I}_{2}\otimes\widetilde{{\bf{\Upsigma}}}_1,\quad {{\partial{\bf F}_{6}}\over {\partial\tau_2}} = {{\partial{\bf F}_{6}}\over {\partial\tau_t}} = {\bf 0}, \\ & {{\partial{\bf F}_{7}}\over {\partial\lambda_i}} = {\bf 0}, \quad {{\partial{\bf F}_{7}}\over {\partial\tau_1}} = {\bf I}_{c_2-2}\otimes\widetilde{{\bf{\Upsigma}}}_1,\quad {{\partial{\bf F}_{7}}\over {\partial\tau_2}} = \widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{c_1-2}\quad {{\partial{\bf F}_{7}}\over {\partial\tau_t}} = {\bf 0}, \\ & {{\partial{\bf F}_{8}}\over {\partial\lambda_i}} = {{\partial{\bf F}_{8}}\over {\partial\tau_1}} = {{\partial{\bf F}_{8}}\over {\partial\tau_2}} = {\bf 0}, \quad {{\partial{\bf F}_{8}}\over {\partial\tau_t}} = {\bf I}_{3}\otimes\widetilde{{\bf{\Upsigma}}}_t \\ & {{\partial{\bf F}_{9}}\over {\partial\lambda_i}} = {{\partial{\bf F}_{9}}\over {\partial\tau_1}} = {\bf 0}, \quad {{\partial{\bf F}_{9}}\over {\partial\tau_2}} = \widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{2}\otimes{\bf I}_{{c_t}-2}, \quad {{\partial{\bf F}_{9}}\over {\partial\tau_t}} = {\bf I}_{c_2-2}\otimes{\bf I}_{2}\otimes\widetilde{{\bf{\Upsigma}}}_t, \\ & {{\partial{\bf F}_{10}}\over {\partial\lambda_i}} = {\bf 0}, \quad {{\partial{\bf F}_{10}}\over {\partial\tau_1}} = {\bf I}_{2}\otimes\widetilde{{\bf{\Upsigma}}}_1\otimes{\bf I}_{{c_t}-2},\quad {{\partial{\bf F}_{10}}\over {\partial\tau_2}} = {\bf 0},\quad {{\partial{\bf F}_{10}}\over {\partial\tau_t}} = {\bf I}_{2}\otimes{\bf I}_{c_1-2}\otimes\widetilde{{\bf{\Upsigma}}}_t. \\ & {{\partial{\bf F}_{11}}\over {\partial\lambda_i}} = {\bf 0},\quad {{\partial{\bf F}_{11}}\over {\partial\tau_1}} = {\bf I}_{c_2-2}\otimes\widetilde{{\bf{\Upsigma}}}_1\otimes{\bf I}_{{c_t}-2},\quad {{\partial{\bf F}_{11}}\over {\partial\tau_2}} = \widetilde{{\bf{\Upsigma}}}_2\otimes{\bf I}_{c_1-2}\otimes{\bf I}_{{c_t}-2}, \\ & {{\partial{\bf F}_{11}}\over {\partial\tau_t}} = {\bf I}_{c_2-2}\otimes{\bf I}_{c_1-2}\otimes\widetilde{{\bf{\Upsigma}}}_{t}. \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugarte, M.D., Goicoa, T., Etxeberria, J. et al. A P-spline ANOVA type model in space-time disease mapping. Stoch Environ Res Risk Assess 26, 835–845 (2012). https://doi.org/10.1007/s00477-012-0570-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0570-4

Keywords

Navigation