Skip to main content
Log in

On the cumulant expansion up scaling of ground water contaminant transport equation with nonequilibrium sorption

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 26 November 2008

Abstract

The laboratory-scale ground water transport equation with nonequilibrium sorption reaction subjected to unsteady, nondivergence-free, and nonstationary velocity fields is up-scaled to the field-scale by using the ensemble-averaged equations obtained from the cumulant expansion ensemble-averaging method. It is found that existing ensemble-averaged equations obtained with the help of the cumulant expansion method for the system of linear partial differential equations are not second-order exact. Although the cumulant expansion methodology is designed for noncommuting operators, it is found that there are still commudativity requirements that need to be satisfied by the functions and constants exist in the coefficient matrix of the system of ordinary/partial differential equations. A reversibility requirement, which covers the commudativity requirements, is also proposed when applying the cumulant expansion method to a system of partial differential equations/a partial differential equation. The significance of the new velocity correction obtained in this study due to the applied second-order exact cumulant expansion is investigated on a numerical example with a linear trend in the distribution coefficient. It is found that the effect of the new velocity correction can be significant enough to affect the maximum concentration values and the plume center of mass in the case of a trending distribution coefficient in a physically heterogeneous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Cvetkovic VD, Shapiro AM (1990) Mass arrival of sorptive solute in heterogeneous porous media. Water Resour Res 26(9):2057–2067

    Article  Google Scholar 

  • Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities 2. The solute transport. Water Resour Res 18(4):835–848

    Article  Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Article  Google Scholar 

  • Dagan G (1987) Theory of solute transport by groundwater. Ann Rev Fluid Mech 19:183–215

    Article  Google Scholar 

  • Dagan G, Neuman SP (1991) Nonasymptotic behavior of a common Eulerian approximation for transport in random velocity fields. Water Resour Res 27(12):3249–3256

    Article  CAS  Google Scholar 

  • Dentz M, Berkowitz B (2005) Exact effective transport dynamics in a one-dimensional random environment. Phys Rev 72:031110

    Google Scholar 

  • Espinoza C, Valocchi AJ (1997) Stochastic analysis of one dimensional transport of kinetically adsorbing solutes in chemically heterogeneous aquifers. Water Resour Res 33(11):2429–2445

    Article  CAS  Google Scholar 

  • Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19(1):161–180

    Article  Google Scholar 

  • Grobner W, Knapp H (1967) Contribution to the method of lie series, Bibliographisches Intstitute, Mannheim, Germany

  • Hu BX, Cushman H (1997) Comparison of nonlocal Eulerian to Lagrangian moments for transport in an anisotropic heterogeneous aquifer with deterministic linear nonequilibrium sorption. Water Resour Res 33(4):891–896

    Article  CAS  Google Scholar 

  • Hu BX, Deng F, Cushman JH (1995) Nonlocal reactive transport with physical and chemical heterogeneity: linear nonequilibrium sorption with random K d . Water Resour Res 31(9):2239–2252

    Article  CAS  Google Scholar 

  • Kabala ZJ, Sposito G (1991) A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer. Water Resour Res 27(3):341–350

    Article  CAS  Google Scholar 

  • Karakas A, Kavvas ML (2000) Conservation equations for ground-water velocity in general conditions. J Hydrol Eng 5(2):206–216

    Article  Google Scholar 

  • Kavvas ML (2001) General conservation equation for solute transport in heterogeneous porous media. J Hydrol Eng 6(4):341–350

    Article  Google Scholar 

  • Kavvas ML, Karakas A (1996) On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers. J Hydrol 179:321–351

    Article  CAS  Google Scholar 

  • Morales-Casique E, Neuman S P, Guadagnini A (2006) Non-local and local analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework, Adv Water Resour 29:1238–1255

    Article  Google Scholar 

  • Quinodoz HA, Valocchi A (1993) Stochastic analysis of the transport of kinetically sorbing solutes in aquifers with randomly heterogeneous hydraulic conductivity. Water Resour Res 29(9):3227–3240

    Article  CAS  Google Scholar 

  • Selroos J, Cvetkovic V (1994) Mass flux statistics of kinetically sorbing solute in heterogeneous aquifers: analytical solution and comparison with simulations. Water Resour Res 30(1):63–69

    Article  CAS  Google Scholar 

  • Sirin H (2006) Ground water contaminant transport by nondivergence-free unsteady, and nonstationary velocity fields. J Hydrol 330:564–572

    Article  Google Scholar 

  • Sposito G, Barry DA (1987) On the dagan model of solute transport in groundwater: foundational aspects. Water Resour Res 23(10):1867–1875

    Article  CAS  Google Scholar 

  • Suciu N, Vamos C, Eberhard J (2006) Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour Res 42:W11504

    Article  Google Scholar 

  • Van Kampen NG(1981) Stochastic processes in physics and chemistry. North-Holland, Amsterdam, 419 pp

  • Wood BD, Kavvas ML (1999a) Ensemble-averaged equations for reactive transport in porous media under unsteady flow conditions. Water Resour Res 35(7):2053–2068

    Article  Google Scholar 

  • Wood BD, Kavvas ML (1999b) Stochastic solute transport under unsteady flow conditions: comparison of theory, Monte Carlo, and field data. Water Resour Res 35(7):2069–2084

    Article  Google Scholar 

  • Zavala-Sanchez V, Dentz M, Sanchez-Vila X (2007) Effective dispersion in a chemically heterogeneous medium under temporally fluctuating flow conditions. Adv Water Resour 30:1342–1354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Sirin.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00477-008-0293-8.

Appendices

Appendix 1

Following van Kampen (1981) the terms inside the ordering symbol may be considered as if they commute time wise so the Eq. 17 can be written as

$$ {\left\lceil{{\sum\limits_{n = 0}^\infty\frac{1}{n!}\Bigg({\int\limits_0^t{d \tau A_{0} (\tau) +{\int\limits_0^t{d \tau \alpha A_{1} (\tau)\Bigg)^{n}}}}}}} \right\rceil}a ={\left\lceil{\exp\Bigg [{\int\limits_0^t{d \tau A_{0} (\tau)\Bigg]}}} \right\rceil} {\left\lceil{\exp \Bigg[{\int\limits_0^t{d\tau \alpha A_{1} (\tau)}}\Bigg]} \right\rceil}a $$
(36)

If \({\int\nolimits_0^t{d \tau A_{0} (\tau)}}\) and \({\int\nolimits_0^t{d \tau \alpha A_{1} (\tau)}}\) commute Eq. 36 becomes

$$ {\left\lceil {{\sum\limits_{n = 0}^\infty {\frac{1} {{n!}}{\sum\limits_{k = 0}^n {{\left( {\begin{array}{*{20}c} {n} \\ {k} \\ \end{array} } \right)}} }\Bigg({\int\limits_0^t {d\tau A_{0} (\tau )\Bigg)^{{n - k}}\Bigg ({\int\limits_0^t {d\tau \alpha A_{1} (\tau )\Bigg)^{k} } }} }} }} \right\rceil }a = {\left\lceil {\exp\Bigg[{\int\limits_0^t {d\tau A_{0} (\tau )\Bigg]} }} \right\rceil }\,{\left\lceil {\exp\Bigg[{\int\limits_0^t {d\tau \alpha A_{1} (\tau )} }\Bigg]} \right\rceil }a $$
(37)

which is

$$ {\left\lceil {{\sum\limits_{n = 0}^\infty {{\sum\limits_{k = 0}^n {\frac{{\Bigg({\int\limits_0^t {d\tau A_{0} (\tau )\Bigg)^{{n - k}} \Bigg({\int\limits_0^t {d\tau \alpha A_{1} (\tau )\Bigg)^{k} } }} }}} {{(n - k)!k!}}} }} }} \right\rceil }a = {\left\lceil {\exp \Bigg[{\int\limits_0^t {d\tau A_{0} (\tau )\Bigg]} }} \right\rceil }\,{\left\lceil {\exp\Bigg[{\int\limits_0^t {d\tau \,\alpha A_{1} (\tau )}}\Bigg]} \right\rceil }a $$
(38)

Eq. 38 is also equal to

$$ {\left\lceil{\exp\Bigg[{\int\limits_0^t{d \tau A_{0} (\tau)\Bigg]\exp\Bigg[{\int\limits_0^t{d\tau \alpha A_{1} (\tau)}}\Bigg]}}} \right\rceil}a ={\left\lceil{\exp\Bigg[{\int\limits_0^t{d \tau A_{0} (\tau)\Bigg]}}} \right\rceil} {\left\lceil{\exp\Bigg[{\int\limits_0^t{d\tau \alpha A_{1} (\tau)}}\Bigg]} \right\rceil}a $$
(39)

Since the time ordered and regular exponentials of a constant matrix is the same Eq. 39 is automatically satisfied by A 0(τ) and α A 1(τ) matrices made up of constants. When A 0(τ) and α A 1(τ) contain time dependent functions at least one of those matrices should be a diagonal matrix in order to have the Eq. 39 satisfied since the time ordered exponential and regular exponential of a diagonal matrix with time dependent functions is the same.

Appendix 2

By using Eqs. 25 and 29 together with the separation given in Eqs. 23 and 24 the right hand side of Eq. 16 can be written as

$$ \begin{aligned} {\rm RHS} &={\left\lceil{\exp\Bigg[{\int\limits_0^t{d\tau \Bigg(- \langle v_{x} (\tau) \rangle \frac{{\partial }}{{\partial x}}\Bigg)}}\Bigg]} \right\rceil} \\ & \exp\Bigg[{\int\limits_0^t{d\tau \Bigg (- \frac{{\partial \langle v_{x} (x + \varsigma ^{*}, \tau) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \varsigma ^{*}, \tau) - k_{r}\Bigg)}}\Bigg] {\hbox{I}} \\ & {\left\lceil{{\hbox{exp}}igg[{\int\limits_{{0}}^{{\rm t}} \begin{aligned} d\tau \exp\Bigg[ -{\int\limits_0^\tau{d\eta (- \frac{{\partial \langle v_{x} (x + \xi ^{*}, \eta) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \xi ^{*}, \eta) - k_{r})}}\Bigg] {\hbox{I}}\\ \alpha{\hbox{A}}_{{{1}}} (x + \varsigma ^{*}, \tau) \\ \exp \Bigg[{\int\limits_0^\tau{d\eta (- \frac{{\partial \langle v_{x} (x + \xi ^{*}, \eta) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \xi ^{*}, \eta) - k_{r})}}\Bigg] {\hbox{I}} \Bigg] \\ \end{aligned}}} \right\rceil}a \\ \end{aligned} $$
(40)

in which

$$ \xi ^{*} ={\int\limits_0^\eta{d\mu \langle v_{x} (x,\mu) \rangle }} \quad \varsigma ^{*} ={\int\limits_0^\tau{d\eta \langle v_{x} (x,\eta) \rangle }} $$

Applying functions and operators in Eq. 40 one obtains

$$ \begin{aligned} {\rm RHS} &={\left\lceil{\exp \Bigg[{\int\limits_0^t{d\tau \Bigg(- \langle v_{x} (\tau) \rangle \frac{{\partial }}{{\partial x}}\Bigg)}}\Bigg]} \right\rceil} \\ & \exp \Bigg[{\int\limits_0^t{d\tau (- \frac{{\partial \langle v_{x} (x + \varsigma ^{*}, \tau) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \varsigma ^{*}, \tau) - k_{r})}}\Bigg] {\hbox{I}} \\ & {\left\lceil{ \Bigg[{\hbox{exp}}{\int\limits_{{0}}^{t}{d\tau \alpha{\hbox{A}}^+_{{{1}}} (x + \varsigma ^{*}, \tau)\Bigg ]}}} \right\rceil}a \\\end{aligned} $$
(41)

in which

$$ \alpha A^{ + }_{1} (x + \varsigma ^{*} ,\tau ) = {\left[ {\begin{array}{*{20}c} {\begin{aligned} & ( - v_{x} (x + \varsigma ^{*} ,\tau ) + \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle )\frac{\partial } {{\partial x}} \\ & + ( - v_{x} (x + \varsigma ^{*} ,\tau ) + \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle )\frac{{\partial E}} {{\partial x}} \\ & - \frac{{\partial ( - v_{x} (x + \varsigma ^{*} ,\tau ) + \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle )}} {{\partial x}} \\ & + D_{x} \frac{{\partial ^{2} \,}} {{\partial x^{2} }} + D_{x} \frac{{\partial ^{2} E\,}} {{\partial x^{2} }} + k_{r} \\ \end{aligned} } & {{k_{r} }} \\ {{k_{r} K_{d} (x + \varsigma ^{*} ,\tau )}} & {\begin{aligned} & \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle \frac{\partial } {{\partial x}} \\ & + \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle \frac{{\partial E}} {{\partial x}} \\ & + \frac{{\partial \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle }} {{\partial x}} \\ & + k_{r} K_{d} (x + \varsigma ^{*} ,\tau ) \\ \end{aligned} } \\ \end{array} } \right]} $$
$$ \begin{aligned} E &={\int\limits_0^\tau{d\eta \Bigg(- \frac{{\partial \langle v_{x} (x + \xi ^{*}, \eta) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \xi ^{*}, \eta) - k_{r}\Bigg)}}\\ \xi ^{*} &={\int\limits_0^\eta{d\mu \langle v_{x} (x,\mu) \rangle }}\quad \varsigma ^{*} ={\int\limits_0^\tau{d\eta \langle v_{x} (x,\eta) \rangle }}\\ \end{aligned} $$

Separating \((\frac{{\partial \langle v_{x} (x + \varsigma ^{*}, \tau) \rangle}}{{\partial x}} + k_{r} K_{d} (x + \varsigma ^{*}, \tau) + k_{r}) {\hbox{I}} \) from \(\alpha A^{+}_{1} (x + \varsigma ^{*}, \tau)\) with the help of Eq. 29, one obtains

$$ \begin{aligned} {\rm RHS} =&{\left\lceil{\exp \Bigg[{\int\limits_0^t{d\tau \Bigg(- \langle v_{x} (\tau) \rangle \frac{{\partial }}{{\partial x}}\Bigg)}}\Bigg]} \right\rceil} \\ & \exp \Bigg[{\int\limits_0^t{d\tau \Bigg(- \frac{{\partial \langle v_{x} (x + \varsigma ^{*}, \tau) \rangle}}{{\partial x}} - k_{r} K_{d} (x + \varsigma ^{*}, \tau) - k_{r}\Bigg)}}\Bigg] {\hbox{I}} \\ & \exp \Bigg[{\int\limits_0^t{d\tau \Bigg(\frac{{\partial \langle v_{x} (x + \varsigma ^{*}, \tau) \rangle}}{{\partial x}} + k_{r} K_{d} (x + \varsigma ^{*}, \tau) + k_{r}\Bigg)}}\Bigg] {\hbox{I}} \\ & {\left\lceil{ \Bigg[{\hbox{exp}}{\int\limits_{{0}}^{{\rm t}}{d\tau \alpha{\hbox{A}}^{{{{+ +}}}}_{{{1}}} (x + \varsigma ^{*}, \tau) \Bigg]}}} \right\rceil}a \\ \end{aligned} $$
(42)

in which

$$ \alpha A^{{ + + }}_{1} (x + \varsigma ^{*} ,\tau ) = {\left[ {\begin{array}{*{20}c} {\begin{aligned} & ( - v_{x} (x + \varsigma ^{*} ,\tau ) + \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle )\frac{\partial } {{\partial x}} \\ & - \frac{{\partial ( - v_{x} (x + \varsigma ^{*} ,\tau ))}} {{\partial x}} + D_{x} \frac{{\partial ^{2} }} {{\partial x^{2} }} - k_{r} K_{d} (x + \varsigma ^{*} ,\tau ) \\ \end{aligned} } & {{k_{r} } } \\ {{k_{r} K_{d} (x + \varsigma ^{*} ,\tau )} } & {{ \langle v_{x} (x + \varsigma ^{*} ,\tau ) \rangle \frac{\partial } {{\partial x}} - k_{r} } } \\ \end{array} } \right]} $$
$$ \varsigma ^{*} ={\int\limits_0^\tau{d\eta \langle v_{x} (x,\eta) \rangle }} $$

Since the second and the third exponentials cancel each other, we are left only with the first and the fourth exponentials in Eq. 42. If the equivalence of the fourth exponential according to Eq. 29 is used in Eq. 42, one can write

$$ \begin{aligned} {\rm RHS}=& {\left\lceil{\exp \Bigg[{\int\limits_0^t{d\tau \Bigg(- \langle v_{x} (\tau) \rangle \frac{{\partial }}{{\partial x}}\Bigg)}}\Bigg]} \right\rceil}{\left\lfloor {\exp \Bigg[{\int\limits_0^t {d\tau \Bigg(\langle v_{x} (\tau) \rangle \frac{{\partial }}{{\partial x}}\Bigg)}}\Bigg]} \right\rfloor} \\ & {\left\lceil { {\hbox{exp}} \Bigg[ {\int\limits_{{0}}^{{\rm t}} {d\tau (A_{0} (\tau) + \alpha A_{1} (\tau)) \Bigg]}}} \right\rceil}a \\ \end{aligned} $$
(43)

Eq. 43 is equal to

$$ {\rm RHS} = {\left\lceil {\Bigg[{\hbox {exp}}{\int\limits_{{0}}^{{\rm t}} {d\tau (A_{0} (\tau) + \alpha A_{1} (\tau)) \Bigg]}}} \right\rceil}a $$
(44)

which is the left hand side of Eq. 16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirin, H., Mariño, M.A. On the cumulant expansion up scaling of ground water contaminant transport equation with nonequilibrium sorption. Stoch Environ Res Risk Assess 22, 551–565 (2008). https://doi.org/10.1007/s00477-007-0174-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0174-6

Keywords

Navigation