Skip to main content

Advertisement

Log in

Precipitation dominates the growth of common hornbeam (Carpinus betulus L.) and stinking juniper (Juniperus foetidissima Willd) in Arasbaran forests of northwestern Iran

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

European hornbeam has a great potential for tree-ring based research when using a combination of conventional dendrochronological techniques and fluorescent microscopy.

Abstract

Arasbaran forests are among the most important ecological areas in Iran, but they have been studied less extensively in comparison to the famous Hyrcanian forests. For the first time, the potential of two dominant species in these forests, i.e. hornbeam (Carpinus betulus) and stinking juniper (Juniperus foetidissima) to study the climate-growth relations was evaluated using a dendroecological approach. Difficulties in distinguishing ring-width boundaries of hornbeam were overcome using fluorescence microscopy. The statistics used to evaluate the chronologies of both species confirmed their capability to study climate–growth relationships and their potential for developing regional climate reconstruction. Hornbeam and juniper showed similar climate-growth relationships. Across all sampling sites, the growth index displayed a positive correlation with precipitation and SPEI drought index, and a negative correlation with temperature. Precipitation in spring and early autumn played a significant role in stimulating the radial growth of the species. However, topography and microclimate could affect the relationship between growth and regional climate, as the highest elevation site receives abundant moisture input from frequent fog events. Our initial study highlights the potential of hornbeam as a widely spread but neglected species in the Northern Hemisphere for dendroecological studies. Furthermore, we conclude that despite some variance in the microclimate of different sites (ranging from cold, sub-humid to warm, semi-arid) within the Arasbaran region, trees of different species in the entire study area show a common response to climatic change, mainly affected by water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets for current study are available from the corresponding author on reasonable request.

References

  • Abdalla M, Ahmed MA, Cai G, Wankmüller F, Schwartz N, Litig O, Javaux M, Carminati A (2022) Stomatal closure during water deficit is controlled by below-ground hydraulics. Ann Bot 129(2):161–170. https://doi.org/10.1093/aob/mcab141

  • Abedi R, Kazemi Rad L (2020) Mapping and assessing the precipitation and temperature changes in Srasbaran forest ecosystem under climate change, NW of Iran. J Environ Sci Stud 5(2):2681–2692

    Google Scholar 

  • Alijanpour A (2014) Effect of physiographical factors on qualitative and quantitative characteristics of Rhus coriaria L. natural stands in Arasbaran region (Horand Township). Iran J For 5(4):431–442

    Google Scholar 

  • Alijanpour A, Fatullahi A, Eshaghi Rad J, Mohamed AR (2018) Effect of aspect and soil on quantitative and qualitative characteristic of hornbeam (Carpinus betulus L.) in Arasbaran forest. Iran J Biol 30(4):887–898

    Google Scholar 

  • Amiri MJ, Eslamian SS (2010) Investigation of climate change in Iran. J Environ Sci Technol 3:208–216. https://doi.org/10.3923/jest.2010.208.216

    Article  Google Scholar 

  • Amoroso M, Daniels L, Baker P, Camarero J (2017) Dendroecology: tree-ring analyses applied to ecological studies. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Antonova GF, Varaksina TN, Zheleznichenko TV, Bazhenov AV (2019) Changes in lignin structure during earlywood and latewood formation in Scots pine stems. Wood Sci Technol 53:927–952

    Article  CAS  Google Scholar 

  • Asri Y, Partonia L (2017) Site and silvicultural characteristics of Juniperus foetidissima Willd. Endangered species in Arasbaran biosphere reserve. Iran J Poplar Res 24:687–699

    Google Scholar 

  • Balzano A, Čufar K, De Micco V (2021) Cell-wall fluorescence highlights the phases of xylogenesis. IAWA J 43(1–2):80–91. https://doi.org/10.1163/22941932-bja10080

    Article  Google Scholar 

  • Bayramzadeh V, Zhu H, Lu X, Attarod P, Zhang H, Li X, Asad F, Liang E (2018) Temperature variability in northern Iran during the past 700 years. Sci Bull 63(8):462–464. https://doi.org/10.1016/j.scib.2018.03.011

    Article  Google Scholar 

  • Bigler C (2016) Trade-offs between growth rate, tree size and lifespan of mountain pine (Pinus montana) in the Swiss National Park. PLOS One 11:e0150402. https://doi.org/10.1371/journal.pone.0150402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, pp 137–152

    Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. https://doi.org/10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  • Camarero JJ, Manzanedo RD, Sanchez-Salguero R, Navarro-Cerrillo RM (2013) Growth response to climate and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. Ann For Sci 70(8):769–780. https://doi.org/10.1007/s13595-013-0321-9

    Article  Google Scholar 

  • Caminero L, Génova M, Camarero JJ, Sánchez-Salguero R (2018) Growth responses to climate and drought at the southernmost European limit of mediterranean Pinus pinaster forests. Dendrochronologia 48:20–29. https://doi.org/10.1016/j.dendro.2018.01.006

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  PubMed  Google Scholar 

  • Ciesla WM (2002) Juniper forests—a special challenge for sustainable forestry. For Trees Livelihoods 12:195–207

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (2013) Methods of dendrochronology: applications in the environmental sciences. Springer, Berlin

    Google Scholar 

  • Donaldson LA, Singh AP, Yoshinaga A, Takabe K (1999) Lignin distribution in mild compression wood of Pinus radiata D. Don. Can J Bot 77:41–50

    CAS  Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Zentralblatt 88:230–250

    Article  Google Scholar 

  • Eini MR, Javadi S, Delavar M (2018) Evaluating the performance of CRU and NCEP CFSR global reanalysis climate datasets, in hydrological simulation by SWAT model (case study: Maharlu Basin). Iran Water Resour Res 14:32–44

    Google Scholar 

  • Esper J (2000) Long–term tree–ring variations in Juniperus at the upper timber–line in the Karakorum (Pakistan). Holocene 10:253–260. https://doi.org/10.1191/095968300670152685

    Article  Google Scholar 

  • Fabijańska A, Danek M, Barniak J, Piórkowski A (2017) Towards automatic tree rings detection in images of scanned wood samples. Comput Electron Agric 140:279–289. https://doi.org/10.1016/j.compag.2017.06.006

    Article  Google Scholar 

  • Fattahi E, moghimi S (2019) Investigation of snow cover changes affected by climate change in North West of Iran. Res Geogr Sci 19:47–63

    Google Scholar 

  • Feng S, Hu Q (2007) Changes in winter snowfall/precipitation ratio in the contiguous United States. J Geophys Res Atmo 112:D15. https://doi.org/10.1029/2007JD008397

    Article  Google Scholar 

  • Fritts H (1976) Tree rings and climate. Academic Press, Elsevier

    Google Scholar 

  • Gärtner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28:85–92. https://doi.org/10.1016/j.dendro.2009.09.002

    Article  Google Scholar 

  • Ghanbari S, Sefidi K (2019) Structure and spatial distribution pattern of tree communities of Juniper (Juniperus foetidissima Willd.) In Arasbaran region. J Plant Res 31:933–945

    Google Scholar 

  • Ghanbari S, Weiss G, Liu J, Eastin I, Fathizadeh O, Moradi G (2022) Potentials and opportunities of wild edible forest fruits for rural household’s economy in Arasbaran, Iran. Forests 13(3):453. https://doi.org/10.3390/f13030453

    Article  Google Scholar 

  • Ghasemnezhad A, Ghorbanzadeh A, Sarmast MK, Ghorbanpour M (2020) A review on botanical, phytochemical, and pharmacological characteristics of iranian junipers (Juniperus spp). In: Swamy M (ed) Plant-derived bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-1761-7_20

    Chapter  Google Scholar 

  • Grivet D, Petit RJ (2003) Chloroplast DNA phylogeography of the hornbeam in Europe: evidence for a bottleneck at the outset of postglacial colonization. Conserv Genet 4:47–56. https://doi.org/10.1023/A:1021804009832

    Article  CAS  Google Scholar 

  • Hadi SJ, Tombul M (2018) Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorol Appl 25(3):445–455. https://doi.org/10.1002/met.1712

    Article  Google Scholar 

  • Hamlet AF, Mote PW, Clark MP, Lettenmaier DP (2005) Effects of temperature and precipitation variability on snowpack trends in the western United States. J Clim 18:4545–4561. https://doi.org/10.1175/JCLI3538.1

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–75

    Google Scholar 

  • Jalali G, Afshin M, Seyfollahian M, Hosseini S (2001) Consideration of natural regeneration of hornbeam (Carpinus betulus) in Sari forests. Daneshvar 8(31):9–14

    Google Scholar 

  • Javanshir K (1976) Iranian shrub and woody plants Atlas. Iran National Society of Natural Resources Conservation. Tehran, Iran

    Google Scholar 

  • Kahveci G, Arslan M (2021) Factors affecting the radial growth of Juniperus foetidissima Willd. and J. excelsa. M. Bieb. in central Anatolia. J For Sci 67(10):477–488

    Article  Google Scholar 

  • Kousari MR, Ekhtesasi MR, Tazeh M, Naeini MAS, Zarch MAA (2011) An investigation of the iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theor Appl Climatol 103(3–4):321–335. https://doi.org/10.1007/s00704-010-0304-9

    Article  Google Scholar 

  • Lebourgeois F, Rathgeber CB, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376

    Article  Google Scholar 

  • Looney CE, D’Amato AW, Fraver S et al (2016) Examining the influences of tree-to-tree competition and climate on size-growth relationships in hydric, multi-aged Fraxinus nigra stands. For Ecol Manage 375:238–248. https://doi.org/10.1016/j.foreco.2016.05.050

    Article  Google Scholar 

  • Ma Y, Liu Y, Song H, Sun J, Lei Y, Wang Y (2015) A standardized precipitation evapotranspiration index reconstruction in the Taihe mountains using tree-ring widths for the last 283 years. PLOS One 10(7):e0133605. https://doi.org/10.1371/journal.pone.0133605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maceda A, Terrazas T (2022) Fluorescence microscopy methods for the analysis and characterization of Lignin. Polymers 14(5):961. https://doi.org/10.3390/polym14050961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri Daneshvar MR, Ebrahimi M, Nejadsoleymani H (2019) An overview of climate change in Iran:facts and statistics. Environ Syst Res 8:7. https://doi.org/10.1186/s40068-019-0135-3

    Article  Google Scholar 

  • Miri M, Azizi G, Khoshakhlagh F, Ramimi M (2016) Evaluation statistically of temperature and precipitation datasets with observed data in Iran. Iran J Watershed Manage Sci Eng 10:40–50

    Google Scholar 

  • Moradi Dirmandrik S, Ramezani Kakroudi E, Alijanpour A, Banj Shafiei A (2015) Quantitative and qualitative characteristics of Arasbaran forest protected area in slope gradient classes. For Res Dev 1(1):1–15

    Google Scholar 

  • Mousavi A, Ardalan A, Takian A, Ostadtaghi A, Naddafi K, Bavani A (2020) Climate change and health in Iran: a narrative review. J Environ Health Sci Eng 18:367–378. https://doi.org/10.1007/s40201-020-00462-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasiri V, Darvishsefat AA, Rafiee R, Shirvany A, Hemat MA (2019) Land use change modeling through an integrated multi-layer perceptron neural network and Markov chain analysis (case study: Arasbaran region, Iran). J For Res 30:943–957. https://doi.org/10.1007/s11676-018-0659-9

    Article  Google Scholar 

  • Nourisadegh AA, Oladi R, Pourtahmasi K, Etemad V (2018) The effect of tree diameter class on cambium phenology and radial growth of hornbeam (Carpinus betulus L.) in Kheiroud forest, Nowshahr. Iran J Poplar Res 26(4):447–458

    Google Scholar 

  • Oladi R, Emaminasab M, Eckstein D (2017) The dendroecological potential of shrubs in north iranian semi-deserts. Dendrochronologia 44:94–102. https://doi.org/10.1016/j.dendro.2017.04.004

    Article  Google Scholar 

  • Paridari IC, Jalali SG, Sonboli A, Zarafshar M, Bruschi P (2013) Leaf macro-and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). J For Res 24(2):301–307

    Article  CAS  Google Scholar 

  • Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151(12):1800–1811. https://doi.org/10.1016/j.agrformet.2011.07.018

    Article  Google Scholar 

  • Peterson DW, Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82:3330–3345

    Article  Google Scholar 

  • Pourtahmasi K, Poursartip L, Brauning A, Parsapazhouh D (2009) Comparison between the radial growth of juniper (Juniperus polycarpous) and oak (Quercus macranthera) trees in two sides of the Alborz mountains in Chaharbagh region of Gorgan. J For Wood Prod 62(2):159–169

    Google Scholar 

  • Rasuly A, Naghdifar R, Rasoli M (2010) Detecting of Arasbaran forest changes applying image processing procedures and GIS techniques. Proc Environ Sci 2:454–464

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. User reference, Heidelberg, Germany

    Google Scholar 

  • Saboor L, Mirmousavi S (2014) Study of snow precipitation changes trend in Northwest of Iran. Geogr Environ Plan 25(3):119–136

    Google Scholar 

  • Saderi SM, Pourtahmasi K, Oladi R, Rathgeber CBK (2013) Wood formation in Juniperus excelsa ssp. polycarpos in the high mountains of north-east Iran. J Trop For Sci 1:421–428

    Google Scholar 

  • Sagheb-Talebi K, Pourhashemi M, Sajedi T (2014) Forests of Iran: a treasure from the past, a hope for the future. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Sarhangzadeh J (2019) Habitat suitability modeling for Juniper (Juniperus foetidissima) in Arasbaran Biosphere Reserve. For Res Dev 5(1):93–112

    Google Scholar 

  • Shi HY, Li TJ, Wei JH (2017) Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the three-river Headwaters region. J Hydrol 548:322–332. https://doi.org/10.1016/j.jhydrol.2017.03.017

    Article  Google Scholar 

  • Sohrabi M, Alstrup V (2007) Additions to the Lichen Mycota of Iran from east Azerbaijan province. Mycotaxon 100:145–148

    Google Scholar 

  • Soltani S, Saboohi R, Yaghmaei L (2012) Rainfall and rainy days trend in Iran. Clim Change 110(1–2):187–213. https://doi.org/10.1007/s10584-011-0146-1

    Article  Google Scholar 

  • Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the mediterranean. Nat Hazards Earth Syst Sci 11:33–51. https://doi.org/10.5194/nhess-11-33-2011

    Article  Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Arizona

    Google Scholar 

  • St.George S (2014) An overview of tree-ring width records across the northern hemisphere. Quat Sci Rev 95:132–150. https://doi.org/10.1016/j.quascirev.2014.04.029

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1996) An introduction to tree-ring dating. University of Arizona Press, Arizona

    Google Scholar 

  • Surový P, Olbrich A, Polle A, Ribeiro NA, Sloboda B, Langenfeld-Heyser R (2009) New method for measurement of annual growth rings in cork by means of autofluorescence. Trees 23(6):1237–1246. https://doi.org/10.1007/s00468-009-0363-7

    Article  CAS  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11(4):1033–1043

    Article  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110(1):52–57. https://doi.org/10.1016/j.ecolind.2022.108630

    Article  CAS  PubMed  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

  • Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R (2011) Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob Planet Change 78(3–4):137–146. https://doi.org/10.1016/j.gloplacha.2011.06.003

    Article  Google Scholar 

  • Zheng ZP, Zhao SY, Zhou FF, He JF, Hu SB, Dong ZP, Chen SY, Fang KY (2019) Variations of mean sensitivity of tree rings in Asia and their influencing factors. J Appl Ecol 30(3):805–813

    Google Scholar 

  • Zubairov B, Lentschke J, Schröder H (2019) Dendroclimatology in Kazakhstan. Dendrochronologia 56:125602. https://doi.org/10.1016/j.dendro.2019.05.006

    Article  Google Scholar 

Download references

Acknowledgements

Iran National Science Foundation (INSF) is gratefully acknowledged for financial support of this work (project no. 96002306).

Funding

This work has funded by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Oladi.

Ethics declarations

Conflict of  interests

The authors declare that they have no competing interests.

Additional information

Communicated by Camarero.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emaminasab, M., Oladi, R., Pourtahmasi, K. et al. Precipitation dominates the growth of common hornbeam (Carpinus betulus L.) and stinking juniper (Juniperus foetidissima Willd) in Arasbaran forests of northwestern Iran. Trees 37, 1343–1354 (2023). https://doi.org/10.1007/s00468-023-02426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-023-02426-0

Keywords

Navigation