Skip to main content

Advertisement

Log in

Daily growth of European beech (Fagus sylvatica L.) on moist sites is affected by short-term drought rather than ozone uptake

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Daily stem growth was reduced by drought with high significance, but not affected by ozone uptake or drought–ozone interaction. Increasing air temperature showed capacity of compensating negative drought effects.

Abstract

Future increases in stress on forest trees due to rising ozone deposition and/or exacerbating drought are one of many contemporary climate change concerns. European beech (Fagus sylvatica L.) is known to be sensitive to both stressors. To date, there is limited evidence concerning the impact of ozone uptake, or its combined effect with drought, on the growth of forest trees. This study emanated from the hypothesis that high daily ozone influx potentially limits daily radial stem increment. A secondary hypothesis intimated that not only prolonged, but also short-term water limitation has the capacity for reducing intra-annual growth performance. To address these hypotheses, the concerted impacts of drought and O3 on radial stem growth were analyzed as components of multi-factorial field scenarios comprising gradients in altitude, temperature, precipitation and ozone exposure. Linear mixed models, adjusting for meteorological factors and nutrition, were fit to daily growth measurements in nine beech forest sites across Bavaria/Germany during three consecutive growing seasons. During individual years, daily ozone influx did not statistically significantly limit daily stem growth. However, short-term drought was associated with statistically significant, but minor and reversible limitations of intra-annual radial stem growth. Distinctive levels of plant-available soil water and soil water potential limited growth. Increases in air temperature were conducive to beech stem growth across the study region, apparently offering the capacity for buffering drought impact on the stem growth of beech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ammer C, Bickel E, Kölling C (2008) Converting Norway spruce stands with beech—a review on arguments and techniques. Austrian J For Sci 125:3–26

    Google Scholar 

  • AQEG (2007) Air quality and climate change: a UK perspective. Third report of the Air Quality Expert Group. Department for Environment, Food and Rural Affairs-DEFRA, London, p 272

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Baumgarten M, von Teuffel K (2005) Nachhaltige Waldwirtschaft in Deutschland. In: von Teuffel K et al (eds) Waldumbau. Springer, Berlin, pp 1–10

    Chapter  Google Scholar 

  • Baumgarten M, Werner H, Häberle K-H, Emberson LD, Fabian P, Matyssek R (2000) Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environ Pollut 109:431–442

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten M, Huber C, Büker P, Emberson L, Dietrich H-P, Nunn AJ, Heerdt C, Beudert B, Matyssek R (2009) Are Bavarian forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices. Environ Pollut 157:2091–2107

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten M, Weis W, Kühn A, May M, Matyssek R (2014) Forest transpiration-targeted through xylem sap flux assessment versus hydrological modeling. Eur J For Res 133:677–690

    Article  Google Scholar 

  • Beudert B, Breit W (2004) Zwölf Jahre Integrated- Monitoring- Programm an der Meßstelle Forellenbach im Nationalpark Bayerischer Wald. Fkz. 351 01 012; Nationalparkverwaltung Bayerischer Wald, 307 S, Grafenau

  • Beudert B, Breit W, Höcker L, Stamm O, Schwarz B (2007) Integrierte Umweltbeobachtung im Forellenbachgebiet des Nationalparks Bayerischer Wald im Netzwerk des Internationalen Kooperationsprogramms über die Auswirkungen grenzüberschreitender Luftschadstoffe und des Klimawandels auf Ökosysteme (UN/ECE – ICP Integrated Monitoring), Hrsg. Umweltbundesamt (UBA), Nationalpark Bayerischer Wald

  • BMELF (1997) Dauerbeobachtungsfläche zur Umweltkontrolle im Wald Level II. Erste Ergebnisse. Hrsg. Bundesministerium für Ernährung, Landwirtschaft und Forsten

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–882

    Article  Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    Article  CAS  PubMed  Google Scholar 

  • Braun S, Schindler C, Rihm B (2014) Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst. Environ Pollut 192:129–138

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–756

    CAS  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Freidlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • de Vries W, Dobbertin MH, Solberg S, van Dobben HF, Schaub M (2014) Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil. doi:10.1007/s11104-014-2056-2

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78

    Article  Google Scholar 

  • Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J-P (2000a) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  PubMed  Google Scholar 

  • Emberson LD, Wieser G, Ashmore MR (2000b) Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environ Pollut 109:393–402

    Article  CAS  PubMed  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253. doi:10.1126/science.1066208

    Article  CAS  PubMed  Google Scholar 

  • Federer CA (1995) BROOK90: a Simulation model for evaporation, soil water and streamflow, Version 3.1 Computer freeware and documentation. USDA For Serv, PO Box 640 k, Durham NH, USA

  • Federer CA, Vörösmarty C, Fekete B (1996) Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour Res 32:2315–2321

    Article  Google Scholar 

  • Fotelli MN, Rennenberg H, Holst T, Mayer H, Geßler A (2003) Effects of climate and silviculture on the carbon isotope composition of understorey species in a beech (Fagus sylvatica L.) forest. New Phytol 159:229–244

    Article  CAS  Google Scholar 

  • Fritts HC (1958) An analysis of radial growth of beech in a central Ohio forest during 1954–1955. Ecology 39:705–720

    Article  Google Scholar 

  • Gerosa G, Marzuoli R, Bussotti F et al (2003) Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environ Pollut 125:91–98

    Article  CAS  PubMed  Google Scholar 

  • Geßler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298

    Article  PubMed  Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:81–88

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    Article  PubMed  Google Scholar 

  • Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283. doi:10.1016/s0304-3800(98)00205-1

    Article  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agr Forest Meteorol 100:291–308

    Article  Google Scholar 

  • Grünhage L, Pleijel H, Mills G, Bender J, Danielsson H, Lehmann Y, Castell J-F, Bethenod O (2012) Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield. Environ Pollut 165:147–157

    Article  PubMed  Google Scholar 

  • Hacke U, Sauter JJ (1995) Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J Exp Bot 46:1177–1183

    Article  CAS  Google Scholar 

  • Hagemeier M (2002) Funktionale Kronenarchitektur Mitteleuropäischer Baumarten am Beispiel von Hängebirke, Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und Rotbuche. Gebrüder Borntraeger Verlagsbuchhandlung, Science Publishers, Stuttgart

  • Hammel K, Kennel M (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushaltes von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90, Forstliche Forschungsberichte München 185

  • Herzog KM, Häsler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jump A, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174

    Article  Google Scholar 

  • Kirtman B, and Coauthors (2013) Near-term climate change: projections and predictability. In: Stocker T et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 953–1028

  • Klap JM, Reinds GJ, Bleeker A, de Vries W (2000) Environmental stress in German forests; assessment of critical deposition levels and their exceedances and meteorological stress for crown condition monitoring sites in Germany, Alterra-Rapport 134. Alterra, Green World Research, Wageningen

    Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J Forest Res 127:89–101

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana J-F (2014) Europe. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Kozlowski TT, Pallardy SG (1996) Physiology of woody plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. Forest Ecol Manag 259:2213–2222

    Article  Google Scholar 

  • Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits. For Ecol Manag 256:648–655

    Article  Google Scholar 

  • Löf M (2000) Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceous vegetation. Can J For Res 30:855–864

    Article  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Article  Google Scholar 

  • LRTAP Convention (2010) Mapping Manual, UNECE convention for long-range trans-boundary air pollution, chapter 3 mapping manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Mapping critical level for vegetation. 2010 revision, minor text changes made June 2011, (http://icpvegetation.ceh.ac.uk/manuals/mapping_manual.html)

  • Martin MJ, Host GE, Lenz KE, Isebrands JG (2001) Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. Environ Pollut 115:425–436

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–403

    Article  CAS  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Saurer M, Keller T (1992) Seasonal growth, δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees 6:69–76

    Article  Google Scholar 

  • Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281

    Article  CAS  Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson P-E, Paoletti E, Sanz M, Schaub M, Wieser G (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Wieser G, Patzner K, Blaschke H, Häberle K-H (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts? Eur J Forest Res 128:579–596

    Article  Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R et al (2010a) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010b) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Wieser G, Calfapietra C, de Vries W, Dizengremel P, Ernst D, Jolivet Y, Mikkelsen TN, Mohren GMJ, Le Thiec D, Tuovinenk J-P, Weatherall A, Paoletti E (2012a) Forests under climate change and air pollution: gaps in understanding and future directions for research. Environ Pollut 160:57–65

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Kozovits AR, Schnitzler J, Pretzsch H, Dieler J, Wieser G (2012b) Forest trees under air pollution as a factor of climate change. In: Tausz M, Grulke N (eds) Trees in a changing environment: ecophysiology, adaptation and future survival. Springer (in press)

  • Matyssek R, Wieser G, Fleischmann F, Grünhage L (2013a) Ozone research, Quo Vadis? Lessons from the free-air canopy fumigation experiment at Kranzberg Forest. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Developments in environmental science 13, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp 103–129

  • Matyssek R, Knoke T, Clarke N, et al. (2013b) Conclusions and perspectives. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Developments in environmental science 13, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp 591–607

  • Mc Laughlin SB, Nosal M, Wullschleger SD, Sun G (2007) Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytol 174:109–124

    Article  CAS  Google Scholar 

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704. doi:10.1093/treephys/tpq027

    Article  CAS  PubMed  Google Scholar 

  • Nunn AJ, Wieser G, Metzger U et al (2007) Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions. Environ Pollut 146:629–639

    Article  CAS  PubMed  Google Scholar 

  • Ollinger SV, Aber JD, Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf-, canopy-, and stand-level processes. Ecol Appl 7:1237–1251

    Article  Google Scholar 

  • Panek JA, Goldstein AH (2001) Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol 21:337–344

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2014). nlme: linear and nonlinear mixed effects models. R package version 3.1-117, http://CRAN.R-project.org/package=nlme

  • Piovesan G, Di Filippo A, Alessandrini A et al (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci 16:13–28

    Google Scholar 

  • Pretzsch H, Ďurský J (2002) Growth Reaction of Norway Spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.) to Possible Climatic Changes in Germany. A Sensitivity Study. Forstwiss Centralbl 121:145–154

    Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) The mixed spruce–beech forest stands of the ‘Sonderforschungsbereich’ ‘growth or parasite defence?’ in the forest district Kranzberger Forst. Forstwiss Centralbl 117:241–257

    Article  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun. doi:10.1038/ncomms5967

    PubMed  PubMed Central  Google Scholar 

  • Raspe S (2012) QA-Met-11: Report on soil moisture on D3 plots, Action C1-Met-29(BY). FUTMON, Bavarian State Institute of Forestry

    Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rodríguez-Calcerrada J, Martin-StPaul NK, Lempereur M, Ourcival J-M, del Carmen del Rey M, Joffre R, Rambal S (2014) Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agr Forest Meteorol 195–196:61–72

  • Sabaté S, Garcia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecol Manag 2906:1–15

    Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. J Am Soc Agron 50:1031–1036

    Article  Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin, pp 181–230

  • Schulze E-D, Čermák J, Matyssek R, Penka M, Zimmermann R, Vasícek F, Gries W, Kučera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483

    Article  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–795

    Article  CAS  PubMed  Google Scholar 

  • Smidt S, Gabler K, Halbwachs G (1991) Beurteilung österreichischer Ozonmeßdaten in Hinblick auf wirkungsbezogene Grenzwerte. Staub Reinhalt Luft 51:43–49

    CAS  Google Scholar 

  • Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Garcia Fernandez P, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag 258:1735–1750

    Article  Google Scholar 

  • Tang J, Bolstad PV, Ewers BE, Desai AR, Davis KJ, Carey EV (2006) Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. J Geophys Res 111:G02009. doi:10.1029/2005JG000083

    Google Scholar 

  • Thomas FM (2000) Growth and water relations of four deciduous tree species (Fagus sylvatica L., Quercus petraea [Matt.] Liebl., Q. pubescens Willd., Sorbus aria [L.] Cr.) occurring at Central-European tree-line sites on shallow calcareous soils: physiological reactions of seedlings to severe drought. Flora 195:104–115

    Google Scholar 

  • van der Maaten E (2012) Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26:777–788

    Article  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Wagner A (2010) The FutMon water budget model comparison action FutMon C1-Met-29 (BY) Report

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Webb RA (1972) Use of the boundary line in the analysis of biological data. J Hort Sci 47:309–319

    Google Scholar 

  • Weis W, Hertel C, Wagner A, Raspe S (2011) Abschlussbericht ST 241 Verbesserung der Wasserhaushaltsmodellierung mit Daten des forstlichen Umweltmonitorings im Projekt FUTMON (LIFE+)

  • Wieser G, Matyssek R, Götz B, Grünhage L (2012) Branch cuvettes as means of ozone risk assessment in adult forest tree crowns: combining experimental and modelling capacities. Trees 26:1703–1712

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2009) Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ 32:949–959

    Article  CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last three decades of experiments. Plant Cell Environ 30:1150–1162

    Article  CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Change Biol 15:396–424

    Article  Google Scholar 

  • Wittmann C, Matyssek R, Pfanz H, Humar M (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environ Pollut 150:258–266

    Article  CAS  PubMed  Google Scholar 

  • Wolff B, Riek W (1997) Deutscher Waldbodenbericht 1996. Ergebnisse der bundesweiten Bodenzustandserhebung imWald von 1987–1993 (BZE) Band 1. Bundesministerium für Ernährung, Landwirtschaft und Forsten

Download references

Acknowledgments

The database for this study was obtained by the project KLIP15, funded by the Bavarian State Ministry for Agriculture and Forestry and additional support by the TUM Diversity and Talent Management. We thank the Bavarian State Institute of Forestry (LWF), the UN-ECE Monitoring, Bavarian National Park, the Bavarian Environment Agency (LfU), the Deutscher Wetterdienst (DWD) and the Hessian Agency for the Environment and Geology (HLUG) for kindly providing the data. We gratefully acknowledge the support and technical help provided by H.-P. Dietrich, H.-J. Krause, C. Happe, E. Bickel, M. Högl and A. Wörle from the Bavarian State Institute of Forestry, B. Beudert and W. Breit from UN-ECE Monitoring, Bavarian Forest National Park, as well as T. Feuerbach, P. Kuba and J. Heckmair from the Technische Universität München, Section Ecophysiology of Plants. Furthermore, we particularly want to thank W. Weis and K. May for soil–water modeling via BROOK90 LWF, and B. Koopmann for assistance in data characterization.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika R. Kühn.

Additional information

Communicated by H. Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühn, A.R., Grill, S., Baumgarten, M. et al. Daily growth of European beech (Fagus sylvatica L.) on moist sites is affected by short-term drought rather than ozone uptake. Trees 29, 1501–1519 (2015). https://doi.org/10.1007/s00468-015-1231-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1231-2

Keywords

Navigation