Skip to main content

Advertisement

Log in

High-resolution analysis of stem radius variations in black spruce [Picea mariana (Mill.) BSP] subjected to rain exclusion for three summers

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A rain exclusion repeated for 3 years resulted in larger summer stem contractions in three of the sites in the third year of the experiment and in larger winter contractions in the northern sites. However, there was no pronounced stress reaction in the stem radius variations of mature black spruce since total stem expansion was not reduced.

Abstract

Future climate warming is expected to produce more severe and frequent periods of drought with consequent water stresses for boreal species. In this paper, we present a high-resolution analysis of stem radius variations in black spruce under rain exclusion. All summer long rain exclusions were applied for three consecutive summers to mature trees on four sites along a latitudinal gradient. The stem radius variations of control and treated trees were monitored year-round at an hourly resolution with automatic point dendrometers. The seasonal patterns of shrinking and swelling were analyzed using a sequential analysis technique and the daily patterns of contraction and expansion were extracted. Overall, the treated trees followed their diurnal cycles of contraction and expansion during the rain exclusions and no significant cumulative difference in stem expansion between control and treated trees was observed over the 3 years. In the third year trees subjected to rain exclusion showed larger stem contractions in summer on three out of four sites and larger winter contractions were observed on the northern sites. This study shows that repeated summer rain exclusion does not necessarily lead to a direct evident stress reaction, showing the resilience of the boreal forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe H, Nakai T, Utsumi Y, Kagawa A (2003) Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol 23(12):859–863. doi:10.1093/treephys/23.12.859

    Article  PubMed  Google Scholar 

  • Améglio T, Cochard H, Ewers FW (2001) Stem diameter variations and cold hardiness in walnut trees. J Exp Bot 52(364):2135–2142. doi:10.1093/jexbot/52.364.2135

    PubMed  Google Scholar 

  • Anderson OD (1977) Time series analysis and forecasting: another look at the Box–Jenkins approach. J R Stat Soc Ser D Stat 26(4):285–303. doi:10.2307/2987813

    Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Koerner C, de Boeck HJ, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012) Precipitation manipulation experiments—challenges and recommendations for the future. Ecol Lett 15(8):899–911. doi:10.1111/j.1461-0248.2012.01793.x

    Article  PubMed  Google Scholar 

  • Belien E, Rossi S, Morin H, Deslauriers A (2012) Xylogenesis in black spruce subjected to rain exclusion in the field. Can J For Res Revue Canadienne De Recherche Forestiere 42(7):1306–1315. doi:10.1139/x2012-095

    Article  Google Scholar 

  • Boulouf Lugo J, Deslauriers A, Rossi S (2012) Duration of xylogenesis in black spruce lengthened between 1950 and 2010. Ann Bot 110(6):1099–1108. doi:10.1093/aob/mcs175

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley centre climate model. J Hydrometeorol 7(5):1113–1125. doi:10.1175/jhm544.1

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264. doi:10.1071/fp02076

    Article  CAS  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752 doi:10.1038/nature11688

    Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees Struct Funct 17(6):477–484

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25(2):113–124

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Turcotte A, Morin H, Krause C (2011) A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 29(3):151–161. doi:10.1016/j.dendro.2011.01.008

    Article  Google Scholar 

  • Devine WD, Harrington CA (2011) Factors affecting diurnal stem contraction in young Douglas-fir. Agric For Meteorol 151(3):414–419. doi:10.1016/j.agrformet.2010.11.004

    Article  Google Scholar 

  • D’Orangeville L, Cote B, Houle D, Morin H (2013) The effects of throughfall exclusion on xylogenesis of balsam fir. Tree Physiol 33(5):516–526. doi:10.1093/treephys/tpt027

    Article  PubMed  Google Scholar 

  • Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27(2):U157–U159. doi:10.1016/j.dendro.2009.06.008

    Article  Google Scholar 

  • Drobyshev I, Simard M, Bergeron Y, Hofgaard A (2010) Does soil organic layer thickness affect climate-growth relationships in the black spruce boreal ecosystem? Ecosystems 13(4):556–574. doi:10.1007/s10021-010-9340-7

    Article  CAS  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074. doi:10.1126/science.289.5487.2068

    Article  PubMed  CAS  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29(8):1011–1020. doi:10.1093/treephys/tpp035

    Article  PubMed  Google Scholar 

  • Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, Rossi S, Crivellaro A (2007) Evaluation of drought response of two poplar clones (Populus × canadensis Monch ‘i-214’ and P-deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. J Exp Bot 58(10):2673–2683

    Article  PubMed  CAS  Google Scholar 

  • Hofgaard A, Tardif J, Bergeron Y (1999) Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Can J For Res 29(9):1333–1346

    Article  Google Scholar 

  • Huang J, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP (2010) Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob Change Biol 16(2):711–731. doi:10.1111/j.1365-2486.2009.01990.x

    Article  Google Scholar 

  • Intrigliolo DS, Castel JR (2006) Usefulness of diurnal trunk shrinkage as a water stress indicator in plum trees. Tree Physiol 26(3):303–311

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  • Lamhamedi MS, Bernier PY (1994) Ecophysiology and field performance of black spruce (Picea mariana): a review. Annales des Sciences Forestières 51(6):529–551. doi:10.1051/forest:19940601

    Article  Google Scholar 

  • Loris K, Havranek WM, Wieser G (1999) The ecological signifiance of thickness changes in stem, branches and twigs of Pinus cembra L. during winter. Phyton 39:117–122 (Eurosilva)

    Google Scholar 

  • Major JE, Johnsen KH, Barsi DC, Campbell M (2012) Fine and coarse root parameters from mature black spruce displaying genetic × soil moisture interaction in growth. Can J For Res Revue Canadienne De Recherche Forestiere 42(11):1926–1938. doi:10.1139/x2012-144

    Article  CAS  Google Scholar 

  • McLaughlin SB, Wullschleger SD, Nosal M (2003) Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress. Tree Physiol 23(16):1125–1136

    Article  PubMed  Google Scholar 

  • Motha RP, Baier W (2005) Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Clim Change 70(1–2):137–164. doi:10.1007/s10584-005-5940-1

    Article  CAS  Google Scholar 

  • Page ES (1961) Cumulative sum charts. Technometrics 3(1):1. doi:10.2307/1266472

    Article  Google Scholar 

  • Peng C, Zhihai M, Xiangdong L, Qiuan Z, Huai C, Weifeng W, Shirong L, Weizhong L, Xiuqin F, Xiaolu Z (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1(9):467–471. doi:10.1038/nclimate1293

    Article  Google Scholar 

  • Plummer DA, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Harvey R, de Elia R (2006) Climate and climate change over north America as simulated by the Canadian RCM. J Clim 19(13): 3112–3132. doi:10.1175/jcli3769.1

    Google Scholar 

  • Rossi S, Simard S, Rathgeber CBK, Deslauriers A, De Zan C (2009) Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees Struct Funct 23(1):85–93. doi:10.1007/s00468-008-0257-0

    Article  Google Scholar 

  • Sevanto S, Holtta T, Markkanen T, Peramaki M, Nikinmaa E, Vesala T (2005) Relationships between diurnal xylem diameter variation and environmental factors in Scots pine. Boreal Environ Res 10(5):447–458

    Google Scholar 

  • Sevanto S, Suni T, Pumpanen J, Gronholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26(6):749–757

    Article  PubMed  Google Scholar 

  • Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III, Stackhouse PW Jr (2007) Climate-induced boreal forest change: predictions versus current observations. Global Planet Change 56(3–4):274–296. doi:10.1016/j.glopacha.2006.07.028

    Article  Google Scholar 

  • Strong WL, La Roi GH (1983) Root-system morphology of common boreal forest trees in Alberta, Canada. Can J For Res 13:1164–1173

    Article  Google Scholar 

  • Swidrak I, Gruber A, Kofler W, Oberhuber W (2011) Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought. Tree Physiol 31(5):483–493. doi:10.1093/treephys/tpr034

    Article  PubMed  PubMed Central  Google Scholar 

  • Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, Northwestern Quebec. Environ Monit Assess 67(1–2):141–160

    Article  PubMed  CAS  Google Scholar 

  • Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M (2009) The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric For Meteorol 149(9):1403–1409. doi:http://dx.doi.org/10.1016/j.agrformet.2009.03.010

  • Turcotte A, Rossi S, Deslauriers A, Krause C, Morin H (2011) Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers. Frontiers 2(21):1–8

    Google Scholar 

  • Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10(3):197–207. doi:10.1007/s10035-007-0051-5

    Article  Google Scholar 

  • Zhang QB, Hebda RJ, Zhang QJ, Alfaro RI (2000) Modeling tree-ring growth responses to climatic variables using artificial neural networks. For Sci 46(2):229–239

    Google Scholar 

  • Zweifel R, Häsler R (2000) Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agric For Meteorol 102:213–222

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce. Trees Struct Funct 15(1):50–57

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Sciences and Engineering Research Council of Canada and the Consortium Ouranos. The authors thank F. Gionest and J.-G. Girard for their technical support and A. Garside for checking the English text. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Belien.

Additional information

Communicated by A. Bräuning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belien, E., Rossi, S., Morin, H. et al. High-resolution analysis of stem radius variations in black spruce [Picea mariana (Mill.) BSP] subjected to rain exclusion for three summers. Trees 28, 1257–1265 (2014). https://doi.org/10.1007/s00468-014-1011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1011-4

Keywords

Navigation