Skip to main content
Log in

Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic–Mediterranean boundary

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Earlywood vessel features indicate different adaptations of Quercus petraea and Q. pyrenaica , which are probably related with their corresponding Atlantic and sub-Mediterranean ecological requirements.

Abstract

We studied the climatic signal of the earlywood anatomy of a temperate [Quercus petraea (Mattuschka) Liebl.] and a sub-Mediterranean (Quercus pyrenaica Willd.) oak species growing under similar climatic conditions in a transitional area between the Atlantic and Mediterranean regions of the Iberian Peninsula. We hypothesized that both species react differently in their wood anatomy due to their contrasting ecological requirements, and we test the usefulness of earlywood anatomical features to study the behaviour of these ring-porous oaks upon climate. For this, we measured the earlywood vessels, and obtained annual series of several anatomical variables for the period 1937–2006 using dendrochronological techniques, considering whether the vessels belonged to the first row or not. After optimizing the data set by principal component analysis and progressive filtering of large vessels, we selected maximum vessel area and total number of vessels as they resulted to be the optimal variables to describe vessel size and number, respectively. Vessel size of Q. pyrenaica was dependent on precipitation along the previous growing season, whereas it did not show any clear climatic response for Q. petraea. On the contrary, vessel number was related to winter temperature for both species. These relationships observed between climate and anatomy appeared to be stable through time. The results obtained reinforce the utility of earlywood vessel features as potential climate proxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy R (2007) Europe: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 541–580

    Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Benito-Garzón M, Sánchez-DeDios R, Sainz-Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 10:877–885

    Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150

    Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Granier A (1996) Intra and interannual variations of transpiration, leaf area index and radial growth of a sessile oak (Quercus petraea). Ann For Sci 53:521–536

    Article  Google Scholar 

  • Briffa K, Jones PD (1992) Basic chronology statistics and assessment. In: Cook ER, Kairiukštis LA (eds) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Boston, pp 137–153

    Google Scholar 

  • Briffa KR, Osborn T, Schweingruber F (2004) Large-scale temperature inferences from tree rings. Global Planet Change 40:11–26

    Article  Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27:485–496

    Article  Google Scholar 

  • Büntgen U, Frank D, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate responses shift in a long subalpine spruce chronology. Trees 20:99–110

    Article  Google Scholar 

  • Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I (2010) Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24:463–470

    Article  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Cook ER (1992) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukštis LA (eds) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Boston, pp 98–104

    Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the divergence problem in Nothern forest: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305

    Article  Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Farrar JJ, Evert RF (1997) Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. Trees 11:191–201

    Google Scholar 

  • Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86

    Article  Google Scholar 

  • Fonti P, García-González I (2008) Earlywood vessel size of oak as potential proxy for spring precipitation in mesic sites. J Biogeogr 35:2249–2257

    Article  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa Mill. record temperature prior to their formation. New Phytol 173:562–570

    Article  PubMed  Google Scholar 

  • Fonti P, Eilmann B, García-González I, von Arx G (2009) Expeditious building of ring-porous earlywood vessel chronologies without loosing signal information. Trees 23:665–671

    Article  Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Loffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51

    Article  PubMed  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Mol Cell Biol 5:379–391

    CAS  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    Article  PubMed  Google Scholar 

  • Gallé A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010) Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann For Sci 67:809

    Article  Google Scholar 

  • García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  Google Scholar 

  • García-González I, Fonti P (2006) Selecting earlywood vessels to maximize their environmental signal. Tree Physiol 26:1289–1296

    Article  PubMed  Google Scholar 

  • García-González I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroclimatological studies: an example from two ring-porous species. Trees 22:237–244

    Article  Google Scholar 

  • Gea-Izquierdo G, Fonti P, Cherubini P, Martín-Benito D, Chaar H, Canellas I (2012) Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol 32:401–413

    Article  CAS  PubMed  Google Scholar 

  • Gian-Reto W, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:339–395

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  CAS  PubMed  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program Cofecha. Tree-Ring Res 57:205–221

    Google Scholar 

  • Grissino-Mayer HD (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Coot R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes. Bioscience 51:765–779

    Article  Google Scholar 

  • Hernández-Santana V, Martínez-Vilalta J, Martínez-Fernández J, Williams M (2009) Evaluating the effect of drier and warmer conditions on water use by Quercus pyrenaica. For Ecol Manage 258:1719–1730

    Article  Google Scholar 

  • Hinckley TM, Lassoie JP (1981) Radial growth in conifers and deciduous trees: a comparison. Mitt Forstl Bundesvers Wien 142:17–56

    Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. C R Acad Sci III 322:633–650

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Hydraulic properties of roots and stems of nine woody species from a holm oak forest in NE Spain. Oecologia 133:19–29

    Article  Google Scholar 

  • Mason SJ, Mimmack GM (1992) The use of bootstrap correlation coefficients in climatology. Theor Appl Climatol 45:229–233

    Article  Google Scholar 

  • Matisons R, Brūmelis G (2012) Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees 26:1251–1266

    Article  Google Scholar 

  • McDowell N, Pockman W, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez A (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Mencuccini M, Martínez-Vilalta J, Piñol J, Loepfe L, Burnat M, Álvarez X, Camacho J, Gil D (2010) A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. Am J Bot 97:1247–1259

    Article  PubMed  Google Scholar 

  • Mérian P, Bontemps JD, Bergés L, Lebourgeois F (2011) Spatial variation and temporal instability in climate-growth relationships of sessile oak (Quercus petraea (Matt.) Liebl.) under temperate conditions. Plant Ecol 212:1855–1871

    Article  Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manage 265:161–171

    Article  Google Scholar 

  • Olano JM, Eugenio M, García-Cervigón AI, Folch M, Rozas V (2012) Quantitative tracheid anatomy reveals a complex environmental control of wood structure in continental Mediterranean climate. Int J Plant Sci 173:137–149

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pop EW, Oberbauer SF, Starr G (2000) Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia 124:176–184

    Article  Google Scholar 

  • Rasband W (2009) ImageJ. US National Institute of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij. Accessed 7 March 2012

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Sánchez-DeDios R, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205

    Article  Google Scholar 

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252

    Article  Google Scholar 

  • Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of Beech (Fagus sylvatica L.) and Black Locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J Appl Bot 74:10–16

    Google Scholar 

  • Schume H, Grabner M, Eckmullner O (2004) The influence of an altered groundwater regime on vessel properties of hybrid poplar. Trees 18:185–194

    Article  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    Article  PubMed  Google Scholar 

  • Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Visser H, Büntgen U, D’Arrigo R, Petersen AC (2010) Detecting instabilities in tree-ring proxy calibration. Clim Past 6:367–377

    Article  Google Scholar 

  • Yang Z, Midmore DJ (2005) Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecol Model 181:59–77

    Article  Google Scholar 

  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    Article  PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and ascent of sap. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Sabrina Aldao and Adrián González for field and laboratory assistance, and the Servicio de Montes y Conservación de la Naturaleza de Cantabria for permission for coring trees in Monte Hijedo Natural Park. Rosa Ana Vázquez commented on an earlier version of his manuscript. B. D. González-González benefited from Maria Barbeito pre-doctoral fellowship by Galicia Government. V. Rozas benefited from research contracts by INIA-Xunta de Galicia and CSIC. This research was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spanish Ministry of Science and Innovation (RTA2006-00117). We are also grateful to two anonymous reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio García-González.

Additional information

Communicated by A. Nardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-González, B.D., Rozas, V. & García-González, I. Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic–Mediterranean boundary. Trees 28, 237–252 (2014). https://doi.org/10.1007/s00468-013-0945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0945-2

Keywords

Navigation