Skip to main content
Log in

Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The distribution of nitrogen (N) and carbon (C) pools in 100-year-old sessile oaks was investigated in situ at four key periods of tree phenology. Leaves, twigs, trunk and roots were sampled, and total non-structural nitrogen compounds (TNNC) and total non-structural carbohydrates (TNC) were quantified. TNC concentrations decreased more than 50 % between February and May, especially in the above-ground parts. During the same period, TNNC concentrations drastically decreased especially in twigs (more than 55 % below the winter baseline). This indicates high sink strength of new organs at bud break. TNC concentrations increased in summer in all tree compartments highlighting the TNC storage. TNNC deposition for storage constitution began in autumn during leaf senescence. The first organs acting as a N store were coarse roots followed by twigs; whereas all oak tree compartments were potential C store organs except phloem tissue. Arginine and asparagine were the two prevailing amino acids involved in both storage and transport. Besides identifying the compounds involved in the storage and transportation of N, our results highlight that oak seasonal cycles of C and N are not in phase: after intensive use of C and N stores in spring, the replenishment of N stores lags behind that of C stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210. doi:10.1093/treephys/22.17.1201

    Article  PubMed  CAS  Google Scholar 

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157(3):605–615

    Article  Google Scholar 

  • Black BL, Fuchigami LH, Coleman GD (2002) Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Tree Physiol 22(10):717–724

    Article  PubMed  CAS  Google Scholar 

  • Bollmark L, Sennerby-Forsse L, Ericsson T (1999) Seasonal dynamics and effects of nitrogen supply rate on nitrogen and carbohydrate reserves in cutting-derived Salix viminalis plants. Can J For Res 29(1):85–94. doi:10.1139/cjfr-29-1-85

    Article  Google Scholar 

  • Bradford M (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Canton FR, Suarez MF, Canovas FM (2005) Molecular aspects of nitrogen mobilization and recycling in trees. Photosynth Res 83(2):265–278

    Article  PubMed  CAS  Google Scholar 

  • Cerasoli S, Maillard P, Scartazza A, Brugnoli E, Chaves MM, Pereira JS (2004) Carbon and nitrogen winter storage and remobilisation during seasonal flush growth in two-year-old cork oak (Quercus suber L.) saplings. Ann For Sci 61(7):721–729. doi:10.1051/forest:2004058 ISSN 1286-4560

    Article  CAS  Google Scholar 

  • Coleman GD, Chen THH (1993) Sequence of a poplar bark storage protein gene. Plant Physiol 102(4):1347–1348

    Article  PubMed  CAS  Google Scholar 

  • Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytol 167(1):19–30

    Article  PubMed  CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42(5):679–698

    Article  CAS  Google Scholar 

  • Damesin C, Lelarge C (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ 26(2):207–219

    Article  Google Scholar 

  • Dickson RE (1989) Carbon and nitrogen allocation in trees. Ann Sci For 46:S631–S647. doi:10.1051/forest:198905ART0142

    Article  Google Scholar 

  • Dong SF, Cheng LL, Fuchigami LH New root growth in relation to nitrogen reserves of young Gala/M26 apple trees. In: Neilsen DFBNGPF (ed) 4th International Symposium on Mineral Nutrition of Deciduous Fruit Crops, Penticton, Canada, Aug 13-18 2000. International Society Horticultural Science, Canada, pp 365–369

  • El Zein R, Maillard P, Breda N, Marchand J, Montpied P, Gerant D (2011) Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiol 31(8):843–854. doi:10.1093/treephys/tpr074

    Article  PubMed  Google Scholar 

  • Frak E, Millard P, Le Roux X, Guillaumie S, Wendler R (2002) Coupling sap flow velocity and amino acid concentrations as an alternative method to N-15 labeling for quantifying nitrogen remobilization by walnut trees. Plant Physiol 130(2):1043–1053. doi:10.1104/pp.002139

    Article  PubMed  CAS  Google Scholar 

  • Gansert D, Sprick W (1998) Storage and mobilization of nonstructural carbohydrates and biomass development of beech seedlings (Fagus sylvatica L.) under different light regimes. Trees Struct Funct 12((5):247–257. doi:10.1007/pl00009715

    Google Scholar 

  • Gaufichon L, Reisdorf-Cren Ml, Rothstein SJ, Chardon F, Suzuki A (2010) Biological functions of asparagine synthetase in plants. Plant Sci 179(3):141–153

    Article  CAS  Google Scholar 

  • Gessler A, Schneider S, Weber P, Hanemann U, Rennenberg H (1998) Soluble N compounds in trees exposed to high loads of N: a comparison between the roots of Norway spruce (Picea abies) and beech (Fagus sylvatica) trees grown under field conditions. New Phytol 138(3):385–399

    Article  CAS  Google Scholar 

  • Gojon A, Bussi C, Grignon C, Salsac L (1991) Distribution of NO3− reduction between roots and shoots of peachtree seedlings as affected by NO3− uptake rate. Physiol Plant 82(4):505–512

    Article  CAS  Google Scholar 

  • Grassi G, Millard P, Gioacchini P, Tagliavini M (2003) Recycling of nitrogen in the xylem of Prunus avium trees starts when spring remobilization of internal reserves declines. Tree Physiol 23(15):1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Guak S, Neilsen D, Millard P, Wendler R, Neilsen GH (2003) Determining the role of N remobilization for growth of apple (Malus domestica Borkh.) trees by measuring xylem-sap N flux. J Exp Botany 54(390):2121–2131. doi:10.1093/jxb/erg228 ISSN 0022-0957

    Article  CAS  Google Scholar 

  • Hoch G, Richter A, Korner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26(7):1067–1081

    Article  CAS  Google Scholar 

  • Kang SM, Titus JS (1980) Activity profiles of enzymes involved in glutamine and glutamate metabolism in the apple during autumnal senescence. Physiol Plant 50(3):291–297. doi:10.1111/j.1399-3054.1980.tb04465.x

    Article  CAS  Google Scholar 

  • Kramer PJ, Kozlowski T (1979) Physiology of woody plants, vol 811

  • Langheinrich U, Tischner R (1991) Vegetative storage proteins in Poplar: induction and characterization of a 32- and a 36-kilodalton polypeptide. Plant Physiol 97(3):1017–1025. doi:10.1104/pp.97.3.1017

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Boehlein SK, Schuster SM, Richards NGJ, Thoden JB, Holden HM, Rayment I (2000) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product (vol 38, pg 16146, 1999). Biochemistry 39 (24):7330-7330. doi:10.1021/bi005109y

  • Malaguti D, Millard P, Wendler R, Hepburn A, Tagliavini M (2001) Translocation of amino acids in the xylem of apple (Malus domestica Borkh.) trees in spring as a consequence of both N remobilization and root uptake. J Exp Bot 52(361):1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Millard P (1996) Ecophysiology of the internal cycling of nitrogen for tree growth. Z Pflanzen Bodenk 159(1):1–10

    CAS  Google Scholar 

  • Millard P, Grelet G-a (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30(9):1083–1095. doi:10.1093/treephys/tpq042

    Article  PubMed  CAS  Google Scholar 

  • Millard P, Wendler R, Grassi G, Grelet G-A, Tagliavini M (2006) Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization. Tree Physiol 26(4):527–536. doi:10.1093/treephys/26.4.527

    Article  PubMed  CAS  Google Scholar 

  • Nuevo M, Auger G, Blanot D, d’Hendecourt L (2008) A detailed study of the amino acids produced from the vacuum UV irradiation of interstellar ice analogs. Orig Life Evol Biosph 38(1):37–56. doi:10.1007/s11084-007-9117-y

    Article  PubMed  CAS  Google Scholar 

  • Quartieri M, Millard P, Tagliavini M (2002) Storage and remobilisation of nitrogen by pear (Pyrus communis L.) trees as affected by timing of N supply. Eur J Agron 17(2):105–110

    Article  CAS  Google Scholar 

  • Rognes SE (1975) Glutamine-dependent asparagine synthetase from Lupinus luteus. Phytochemistry 14(9):1975–1982. doi:10.1016/0031-9422(75)83108-6

    Article  CAS  Google Scholar 

  • Sagisaka S (1974) Effect of low temperature on amino acid metabolism in wintering poplar: arginine–glutamine relationships. Plant Physiol 53(2):319

    Article  PubMed  CAS  Google Scholar 

  • Sagisaka S, Araki T (1983) Amino-acid pools in perennial plants at the wintering stage and at the beginning of growth. Plant Cell Physiol 24(3):479–494

    CAS  Google Scholar 

  • Sauter J Jr, van Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees Struct Funct 8(6):297–304

    Google Scholar 

  • Schmidt S, Stewart GR (1998) Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol 18(6):403–410

    Article  PubMed  CAS  Google Scholar 

  • Sievering H, Tomaszewski T, Torizzo J (2007) Canopy uptake of atmospheric N deposition at a conifer forest: part I—canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus Ser B-Chem Phys Meteorol 59(3):483–492. doi:10.1111/j.1600-0889.2007.00264.x

    Article  Google Scholar 

  • Spann TM, Beede RH, DeJong TM (2008) Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiol 28(2):207–213. doi:10.1093/treephys/28.2.207

    Article  PubMed  CAS  Google Scholar 

  • Stassen P, Strydom DK, Stindt HW (1981) Seasonal changes in carbohydrate fractions of young ‘Kakamas’ peach trees. Agroplantae 13:47–53

    CAS  Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant tissue. Annu Rev Plant Physiol Plant Mol Biol 45:303–322

    Article  CAS  Google Scholar 

  • Tagliavini M, Quartieri M, Millard P (1997) Remobilised nitrogen and root uptake of nitrate for spring leaf growth, flowers and developing fruits of pear (Pyrus communis L.) trees. Plant Soil 195(1):137–142

    Article  CAS  Google Scholar 

  • Taylor B (1967) Storage and mobilization of nitrogen in fruit trees: a review. J Aust Inst Agric Sci 33:23–29

    CAS  Google Scholar 

  • Thomas FM, Hilker C (2000) Nitrate reduction in leaves and roots of young pedunculate oaks (Quercus robur) growing on different nitrate concentrations. Environ Exp Bot 43(1):19–32. doi:10.1016/s0098-8472(99)00040-4

    Article  CAS  Google Scholar 

  • Tromp J (1983) Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant Soil 71(1):401–413

    Article  CAS  Google Scholar 

  • Tromp J, Ovaa JC (1979) Uptake and distribution of nitrogen in young apple trees after application of nitrate or ammonium, with special reference to asparagine and arginine. Physiol Plant 45(1):23–28. doi:10.1111/j.1399-3054.1979.tb01657.x

    Article  CAS  Google Scholar 

  • Valenzuela Núñez L, Gérant D, Maillard P, Bréda N, González Cervantes G, Sánchez Cohen I (2011) Evidence for 26KDa vegetative storage protein in the stem sapwood of mature pedunculate oak. Intersciencia 36(2):142–147

  • Vitasse Y, Delzon S, Dufrene E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149(5):735–744. doi:10.1016/j.agrformet.2008.10.019

    Article  Google Scholar 

  • Wildhagen H, Durr J, Ehlting B, Rennenberg H (2010) Seasonal nitrogen cycling in the bark of field-grown Grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiol 30(9):1096–1110. doi:10.1093/treephys/tpq018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by CNRS through the EC2CO project “Linking models and data to evaluate nitrogen feedbacks on potential future carbon sequestration at local, regional and global scales”. The authors would like to acknowledge Michèle Vieil and Patricia Le Thuaut for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bazot.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazot, S., Barthes, L., Blanot, D. et al. Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees 27, 1023–1034 (2013). https://doi.org/10.1007/s00468-013-0853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0853-5

Keywords

Navigation