Skip to main content
Log in

Flavanols in nuclei of tree species: facts and possible functions

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

This review presents a new conceptual model for the involvement of low molecular flavanols in chromatin remodelling and genome organization. The experiments are based on the property of flavanols to associate with nuclei as revealed by blue staining after treatment with the p-dimethylaminocinnamaldehyde reagent. From a critical standpoint, this puzzling finding is nearly incompatible with current views about nuclear organization. Therefore, it was necessary to collect a whole host of data to confirm this new aspect and to gain some insight into possible regulatory roles of histone–flavanol assemblies. A lot of research has been devoted to this topic over the last 13 years. In particular, conifer nuclei were found to contain flavanols, whereas the nuclei of most angiospermous tree species investigated until now reacted negatively. Camellia sinensis (tea bush), being a broad-leaved dicotyledonous species indeed has nuclei with prominent flavanol staining. A subnuclear patterning of flavanols can be observed which is regulated by genetic and epigenetic mechanisms. Broadly speaking, flavanols of nuclei range from evenly diffuse to mosaic-like mottling and from pale to dark blue. The diffuse type is apparently characteristic of a more silenced nuclear state, whilst mild to prominent mottling implicates a transcriptionally more activated state. Dark blue flavanol blobs within the mottled mosaic state indicate a heterochromatin pattern whilst pale blue stippling tends to euchromatin. Environmental stress conditions such as drought combined with heat induce key signals for down-regulation of nuclear flavanols. In this article, various aspects of nuclear flavanol localization are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ay N, Irmler K, Fischer A, Uhlmann R, Reuter G, Humbeck K (2002) Epigenetic programming via methylation at WRKY 53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:533–546

    Google Scholar 

  • Bauer J, Neubauer K, Dithmar H, Polster J, Feucht W (2009) Flavanols in nuclei and cytoplasm: reduction of the micronuclei-inducing effect of aflatoxin B1 in V79 cells through catechin. Adv Food Sci 31(2):82–88

    CAS  Google Scholar 

  • Boehl M, Tietze S, Sokoll et al (2007) Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J 93:2767–2780

    Article  CAS  Google Scholar 

  • Bors W, Michel C (1999) Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radic Bio Med 27:1413–1426

    Article  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Fonseca M (2002) The contribution of nuclear compartmentalization to gene regulation. Cell 108:513–521

    Article  CAS  PubMed  Google Scholar 

  • Chua YL, Brown APC, Gray JC (2001) Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene. Plant Cell 13:599–612

    CAS  PubMed  Google Scholar 

  • Evert RF (2007) Esau`s Plant Anatomy. Wiley-Interscience, New Jersey, pp 45–47

    Google Scholar 

  • Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pears by R2 R3-MyB transcription factors PyMYB10. Planta 232(1):245–255

    Article  CAS  PubMed  Google Scholar 

  • Feucht W, Polster J (2001) Nuclei of plants as a sink for flavanols. Z Naturforsch 56c:479–481

    Google Scholar 

  • Feucht W, Schmid M, Treutter D (2011) Nuclei of Tsuga canadensis: role of flavanols in chromatin organization. Int J Mol Sci 12:6834–6855

    Article  CAS  PubMed  Google Scholar 

  • Feucht W, Treutter D (1995) Catechin effects on growth related processes in cultivated calli of Prunus avium. Gartenbauwiss 60(1):7–11

    CAS  Google Scholar 

  • Feucht W, Treutter D, Polster J (2004a) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430–436

    Article  CAS  PubMed  Google Scholar 

  • Feucht W, Dithmar H, Polster J (2004b) Nuclei of tea flowers as targets for flavanols. Plant Biol 6(6):696–701

    Article  CAS  PubMed  Google Scholar 

  • Feucht W, Treutter D, Dithmar H, Polster J (2005) Flavanols in somatic cell division and male meiosis of tea (Camellia sinensis). Plant Biol 7:168–175

    Article  CAS  PubMed  Google Scholar 

  • Feucht W, Dithmar H, Poster J (2007) Variation of the nuclear subnuclear and chromosomal flavanol deposition in hemlock and rye. Int J Mol Sci 8:635–650

    Article  CAS  Google Scholar 

  • Feucht W, Treutter D, Dithmar H, Polster J (2008) Microspore development of three coniferous species: affinity of nuclei for flavonoids. Tree Physiol 28(12):1783–1791

    Article  PubMed  Google Scholar 

  • Feucht W, Dithmar H, Polster J (2009) Nuclei of Taxus baccata: flavanols linked to chromatin remodeling factors. J Bot. Article ID 842869

  • Francis D, Halford NG (2006) Nutrient sensing in plant meristems. Plant Mol Biol 60:981–993

    Article  CAS  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of mature tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908

    Article  CAS  PubMed  Google Scholar 

  • Gallager KL, Benfey PN (2009) Both the conserved GRAS domain and nuclear localization are required for shoot–root movement. Plant J 57:785–797

    Article  Google Scholar 

  • Gasser SM (2002) Nuclear architecture—visualizing chromatin dynamics in interphase nuclei. Science 296:1412–1416

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA, Dundr M, Misteli T (2006) The road much travelled: trafficking in the cell nucleus. Curr Opin Cell Biol 18:284–290

    Article  CAS  PubMed  Google Scholar 

  • Gunyan A, Paik J, Verreault A (2005) Regulation of histone synthesis and nucleosome assembly. Biochimie 87:625–635

    Article  Google Scholar 

  • Guyon V, Astwood J, Garner E, Dunker K, Taylor LP (2000) Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in Petunia. Plant Physiol 123:699–710

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE (2010) Covalent stabilization of polyphenol–protein complexes. Polyphenols 1: 14–15, XXV International Conference on Polyphenols, Montpellier, France

  • Hanson J, Smeekens S (2009) Sugar perception and signalling—an update. Curr Opin Plant Biol 12:562–567

    Article  CAS  PubMed  Google Scholar 

  • Haslam E (1998) Practical plant polyphenols. Cambridge University Press, Cambridge, pp 138–177

    Google Scholar 

  • Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Wu LY, Tashiro SI, Onodera S, Ikejima T (2006) Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglia cells after oxidative stress. J Asian Nat Prod Res 8:61–71

    Article  CAS  PubMed  Google Scholar 

  • Hutchingson CF, Kieber JJ (2002) Cytokinin signalling in Arabidopsis. Plant Cell 12:S47–S59

    Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenböck G, Schnitzler JP (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two component circuity in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Janin J (1999) Wet and dry interphases: the role of solvent in protein–protein and protein–DNA recognition. Structure (London) 7(12):R277–R279

    Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their functions. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kuhnle JA, Fuller G, Corse J, Mackey BE (1977) Antisenescent activity of natural cytokinins. Physiol Plant 4:14–21

    Article  Google Scholar 

  • Kuriyama H, Fukuda H (2001) Regulation of tracheary element differentiation. J Plant Growth Regul 20:35–51

    Article  CAS  Google Scholar 

  • Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Bio Chem Mol Biol 281(25):17446–17465

    CAS  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  CAS  PubMed  Google Scholar 

  • Lee WJL, Sim J-Y, Zhu BT (2005) Mechanisms for the inhibition of DNA, methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1130

    Article  CAS  PubMed  Google Scholar 

  • Li J, Qu-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–179

    CAS  PubMed  Google Scholar 

  • Lucas J, Ham B-K, Kim J-K (2009) Plasmodesmata-bridging the gap between neighbouring plant cells. Trends Cell Biol 19(10):495–503

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  CAS  PubMed  Google Scholar 

  • Lux-Endrich A, Treutter D, Feucht W (2000) Influence of nutrients and carbohydrate supply on the phenol composition of apple shoot cultures. Plant Cell Tissue Organ Cult 60:15–21

    Article  CAS  Google Scholar 

  • Margna U, Vainjärv T (1983) Kinetin-mediated stimulation of accumulation of buckwheat flavonoids in the dark. Z Naturforsch 38 c:711–718

    Google Scholar 

  • Mauseth JD (1988) Plant anatomy. Benjamin/Cumming Public Company, Menlo Park California

    Google Scholar 

  • Mazumdar M, Misteli T (2005) Chromokinesins: multitalented players in mitosis. Trends Cell Biol 15(7):349–355

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Henning L, Guissem W, Murray IAH (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 6:536–543

    Google Scholar 

  • Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acid Res 34(9):2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037

    Article  CAS  Google Scholar 

  • Mueller-Harvey I, Feucht W, Polster J, Trnkova L, Burgos P, Parker AW, Botchway SW (2012) Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols. Analytica Chimica Acta 719:68–75

    Article  CAS  PubMed  Google Scholar 

  • Napoli CA, Fahy D, Wang HY, Taylor LP (1999) White anther: a Petunia mutant that abolishes pollen flavonol accumulation induces male sterility and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    Article  CAS  PubMed  Google Scholar 

  • Narlikar GJ, Fan HY, Taylor LP (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  CAS  PubMed  Google Scholar 

  • Parr AJ, Bolwell GG (2000) Phenols in plant and man. The potential for possible nutritional enhancement of the diet by modifying the phenol content or profile. J Sci Food Agri 80:885–1012

    Article  Google Scholar 

  • Peer WA, Murphy AS (2006). Flavonoids as signal molecules. In: Grotewold E (ed), The Science of Flavonoids, 9th edn. Springer, Berlin, pp 239–268

  • Polster J, Dithmar H, Feucht W (2003) Are nuclei the targets of flavan-3-ols (catechins). Biol Chem 384:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, Friedemann G, Feucht W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC) in vivo staining and UV–visible spectroscopic titration. Physiol Plant 128:163–174

    Article  CAS  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    Article  CAS  PubMed  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacgmark AA, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through D-type cyclin. Science 53:1541–1544

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in Arabidopsis and maize mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka K, Kikuchi Y, Nishino C, Mori A, Tawata S (1988) Inhibitory effects of flavonoids on DNA-dependent DNA and RNA polymerases. Experientia 44:882–885

    Article  CAS  PubMed  Google Scholar 

  • Shulman Y, Lavee S (1973) The effect of cytokinins and auxins on anthocyanin accumulation in green Manzanillo olives. J Exp Bot 24:655–661

    Article  CAS  Google Scholar 

  • Stapleton A, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105:881–889

    Article  CAS  PubMed  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Tichopad A, Polster J, Pecen L, Pfaffl MW (2005) Model of inhibition of Thermus aquaticus polymerase and Moloney murine leukaemia virus reverse transcriptase by tea polyphenols. J Ethnopharmacol 99:221–227

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (1989) Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldyde. J Chrom 467:185–193

    Article  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2010) Managing phenol contents in crop plants by phytochemical farming and breeding—visions and constraints. Int J Mol Sci 11:807–857

    Article  CAS  PubMed  Google Scholar 

  • Treutter D, Galensa R, Feucht W, Schmid PPS (1985) Flavanone glucosides in callus and phloem of Prunus avium: identification and stimulation of their synthesis. Physiol Plant 65:95–101

    Article  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Veylder L, Joubes J, Inze D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  PubMed  Google Scholar 

  • Weidner S, Wielgat B (1984) Transcriptional activity of chromatin in developing and germinating Triticale embryos. Physiol Plant 60:139–142

    Article  CAS  Google Scholar 

  • Wenzel U, Daniel H (2008) Polyphenols and gene expression. In: Daayf F, Latancio V (eds) Recent advances in polyphenol res, vol 1. Wiley-Blackwell, New Jersey, pp 359–377

    Chapter  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onkelen H, Schmuelling T (2003) Cytokinin-dependent transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  Google Scholar 

  • Yashuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet 22(6):330–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Treutter.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feucht, W., Treutter, D. & Polster, J. Flavanols in nuclei of tree species: facts and possible functions. Trees 26, 1413–1425 (2012). https://doi.org/10.1007/s00468-012-0725-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0725-4

Keywords

Navigation