Skip to main content
Log in

Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Branch knots and other traces of lateral axes, known as rameal traces, have generally been disregarded within architectural studies based on external observations and their analysis limited to tedious manual dissection methods. Based on non-destructive methods including X-ray CT scanning (XRCTS) and on the ontogenic knowledge progressively accumulated on Quercus petraea, this paper presents (1) the tracking methodology of all rameal traces with XRCTS and the “Gourmands” plugin, and software created downstream, notably the 3D visualisation software “Bil3D”; (2) preliminary results obtained on two Quercus petraea 50 cm-long logs; and (3) potential applications in the fields of biology and ecology. Of approximately 45 sequences of linked rameal traces (composing rameal sequences) per metre, half were directly connected to the pith as horizontal traces of primary epicormic buds, while the other half were connected to a branch by an oblique knot. Horizontal epicormic knots essentially emerged within the tree from the most intensive thinning treatment and led to additional knots in the clear wood. Secondary epicormic shoots may emerge from branch and epicormic knots, leading to a vertical spread of epicormic sites for the former and to more bud clusters for the latter. Engulfment of lateral axes can be quantified. Assumptions on the origin of between-tree variability are proposed. Our methodology opens the way to an exhaustive description of rameal traces. It is relevant for ontogenic and wood quality assessment at the trunk level. It may also be very useful for characterising the potentiality of reiteration and for repairing shoot damage and vegetative regeneration at the crown, collar and even root system level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreu JP, Rinnhofer A (2003) Modeling knot geometry in Norway spruce from industrial CT images. Conference information. In: 13th Scandinavian Conference on Image Analysis (SCIA 2003), Jun 29–Jul 02, Halmstad, Sweden. Image Analysis, Proceedings (2749) 786–791

  • Andrews SR, Gill LS (1939) Determining the time branches on living trees have been dead. J For 37:930–935

    Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Barthélémy D, Sabatier S, Pascal O (1997) Le développement architectural du Noyer noir Juglans nigra L. (Juglandaceae). Forêt Entrep 115:40–47

    Google Scholar 

  • Benjamin JG, Kershaw JA, Weiskittel AR, Chui YH, Zhang SY (2009) External knot size and frequency in black spruce trees from an initial spacing trial in Thunder Bay, Ontario. For Chron 85:618–624

    Google Scholar 

  • Bernsten CM (1961) Pruning and epicormic branching in red alder. J For 59:675–676

    Google Scholar 

  • Björklund L, Petersson H (1999) Predicting knot diameter of Pinus sylvestris in Sweden. Scand J For Res 14:376–384

    Article  Google Scholar 

  • BS EN 975-1:2009 Sawn timber. Appearance grading of hardwoods. Oak and beech, 30 April 2009

  • Caraglio Y, Edelin Y (1990) Architecture et dynamique de la croissance du platane, Platanus hydrida Brot. (Platanaceae) {syn. Platanus acerifolia (Aiton) Willd.}. Bulletin de la Société Botanique de France. Lett Botaniques 137:279–291

    Google Scholar 

  • Church TW, Godman RM (1966) The formation and development of dormant buds in sugar maple. For Sci 12:301–306

    Google Scholar 

  • Colin F, Robert N, Druelle JL, Fontaine F (2008) Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. Ann For Sci 65:508–517

    Article  Google Scholar 

  • Colin F, Ducousso A, Fontaine F (2010a) Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits. Ann For Sci 67:312–323

    Article  Google Scholar 

  • Colin F, Mechergui R, Dhôte JF, Fontaine F (2010b) Epicormic ontogeny on sessile oak trunks and thinning effects quantified with the epicormic composition. Ann For Sci (in press)

  • Courraud R (1987) Les gourmands sur les chênes “rouvre” et “pédonculé”. Forêt Entreprise 45:20–33

    Google Scholar 

  • Creber GT, Collinson ME (2006) Epicormic shoot traces in the secondary xylem of the Triassic and Permian fossil conifer species Woodworthia arizonica. IAWA J 27:237–241

    Google Scholar 

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140

    Article  Google Scholar 

  • Dietrich G (1973) Untersuchungen über die Astbildung und natûrliche Astreinigung der Weisstanne. Forstwissenschatliche Forschungen 34:1–95

    Google Scholar 

  • Fink S (1980) Anatomische Untersuchungen über das Vorkommen von Spross- und Wurzelanlagen im Stammbereich von Laub- und NadelBäumen. Allg Forst-u J-Ztg, 151, Jg. 9, 160–182

  • Fink S (1999) Pathological and regenerative plant anatomy. Encyclopedia of plant anatomy Bd. 14, Teil 6. Borntraeger Berlin Stuttgart

  • Fontaine F, Druelle JL, Clément C, Burrus M, Audran JC (1998) Ontogeny of proventitious epicormic buds in Quercus petraea. I. In the five years following initiation. Tree Struct Funct 13:54–62

    Google Scholar 

  • Fontaine F, Kiefer E, Clément C, Burrus M, Druelle JL (1999) Ontogeny of proventitious epicormic buds in Quercus petraea. II. From 6 to 40 years of the tree’s life. Tree Struct Funct 14:83–90

    Google Scholar 

  • Fontaine F, Colin F, Jarret P, Druelle JL (2001) Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann For Sci 58:583–592

    Article  Google Scholar 

  • Fontaine F, Mothe F, Colin F, Duplat P (2004) Structural relationships between the epicormic formations on trunk surface and defects induced in the wood of Quercus petraea. Tree Struct Funct 18:295–306

    Article  Google Scholar 

  • Freyburger C, Longuetaud F, Mothe F, Constant T, Leban JM (2009) Measuring wood density by means of X-rays computer tomography. Ann For Sci 66:804–813

    Article  Google Scholar 

  • Fujimori T (1993) Dynamics of crown structure and stem growth based on knot analysis of a Hinocki Cypress. For Ecol Manag 56:57–68

    Article  Google Scholar 

  • Funt BV, Bryant EC (1987) Detection of internal log defects by automatic interpretation of computer-tomography images. For Prod J 37:56–62

    Google Scholar 

  • Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theoret Biol 191:1–46

    Article  Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Article  Google Scholar 

  • Grah RF (1961) Relationship between tree spacing, knot size, and log quality in young douglas-fir stands. J For 59:270–272

    Google Scholar 

  • Hallé F, Oldemann R (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson & Cie Ed, 178 pp

  • Hartig T (1878) Anatomie und Physiologie der Holzpflanzen. Berlin

  • Hein S, Spiecker H (2007) Comparative analysis of occluded branch characteristics for Fraxinus excelsior and Acer pseudoplatanus with natural and artificial pruning. Can J For Res 37:1414–1426

    Article  Google Scholar 

  • Heuret P, Barthélémy D, Nicolini E, Atger C (2000) Analysis of height growth factors and trunk development in the sessile oak, Quercus petraea (Matt.) Liebl. (Fagaceae) in dynamic sylviculture. Can J Bot 78:361–373

    Article  Google Scholar 

  • Heuret P, Guédon Y, Guérard N, Barthélémy D (2003) Analysing branching pattern in plantations of young red oak trees (Quercus rubra L., Fagaceae). Ann Bot 91:479–492

    Article  PubMed  Google Scholar 

  • Kauppi A, Rinne P, Ferm A (1987) Initiation, structure and sprouting of dormant basal buds in Betula pubescens. Flora 179:55–83

    Google Scholar 

  • Kershaw JA, Benjamin JG, Weiskittel AR (2009) Approaches for modelling vertical distribution of maximum knot size in black spruce: a comparison of fixed- and mixed-effects nonlinear models. For Sci 55:230–237

    Google Scholar 

  • Koehler A (1936) A method of studying knot formation. J For 34:1062–1063

    Google Scholar 

  • Kormanik PP, Brown CL (1967) Origin and development of epicormic branches in sweetgum. USDA Forest Service, Research Paper SE-54:1–17

  • Lang GA (1987) Dormancy: a new universal terminology. HortScience 22:817–820

    Google Scholar 

  • Lemieux H, Samson M, Usenius A (1997a) Shape and distribution of knots in a sample of Picea abies logs. Scand J For Res 12:50–56

    Article  Google Scholar 

  • Lemieux H, Samson M, Usenius A (1997b) Shape and distribution of knots in a sample of Picea abies logs. Scand J For Res 12:50–56

    Article  Google Scholar 

  • Lemieux H, Beaudoin M, Zhang SY (2001) Characterization and modeling of knots in black spruce (Picea mariana) logs. Wood Fiber Sci 33:465–475

    CAS  Google Scholar 

  • Longuetaud F, Caraglio Y (2009) Pith: a marker of primary growth in Picea abies (L.) Karst. Tree Struct Funct 23:325–334

    Google Scholar 

  • Longuetaud F, Saint-Andre L, Leban JM (2005) Automatic detection of annual growth units on Picea abies logs using optical and X-ray techniques. J non destr eval 24:29–43

    Article  Google Scholar 

  • Lundgren C (2000) Predicting log type and knot size category using external log shape data from a 3D log scanner. Scand J For Res 15:119–126

    Article  Google Scholar 

  • Maguire DA, Hann DW (1987) A stem dissection technique for dating branch mortality and reconstructing past crown recession. For Sci 33:858–871

    Google Scholar 

  • Mayer-Wegelin H (1936) Ästung, Schaper-Verlag, Hannover

  • Nicolini E, Caraglio Y (1994) Influence of various architectural characteristics on the development of forked axis in Fagus sylvatica as function of canopy presence. Can J Bot 72:1723–1734

    Article  Google Scholar 

  • Ningre F, Colin F (2007) Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Ann For Sci 64:79–86

    Article  Google Scholar 

  • Nordmark U (2003) Models of knots and log geometry of young Pinus sylvestris sawlogs extracted from computed tomographic images. Scand J For Res 18:168–175

    Article  Google Scholar 

  • Oja J (1997) A comparison between three different methods of measuring knot parameters in Picea abies. Scand J For Res 12:311–315

    Article  Google Scholar 

  • Oja J (2000) Evaluation of knot parameters measured automatically in CT-images of Norway spruce (Picea abies (L.) Karst.). Holz als Roh- und Werkstoff 58:375–379

    Article  Google Scholar 

  • Petruncio M, Briggs D, Barbour RJ (1997) Predicting pruned branch stub occlusion in young, coastal Douglas-fr. Can J For Res 27:1074–1082

    Article  Google Scholar 

  • Pinto I, Pereira H, Usenius A (2003) Analysis of log shape and internal knots in twenty maritime pine (Pinus pinaster Ait.) stems based on visual scanning and computer aided reconstruction. Ann For Sci 60:137–144

    Article  Google Scholar 

  • Rapraeger EF (1939) Development of branches and knots in Western White Pine. J For 37:239–245

    Google Scholar 

  • Rey-Lescure E (1982) The distribution of epicormic branches on the bole of 25 species bordering clearcut stripes. Can J For Res 12:687–698

    Article  Google Scholar 

  • Romberger JA (1963) Meristems, growth, and development in woody plants. An analytical review of anatomical, physiological, and morphogenic aspects. US Dept. Agriculture Technical Bulletin No. 1293:1–214

  • Schöpf J (1954) Untersuchungen über Astbildung und Astreinigung der Selber Kiefer. Forsrwissenschaftliches Centralbau 73:275–289

    Article  Google Scholar 

  • Spathelf P (2003) Reconstruction of crown length of Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.)—technique, establishment of sample methods and application in forest growth analysis. Ann For Sci 60:833–842

    Article  Google Scholar 

  • Spiecker H (1991) Zur Steuerung des Dickenwachstums und der Astreinigung von Trauben-und Stieleichen (Quercus petraea (Matt.) Liebl. und Quercus robur L.). Schriftenreihe der Landesforstverwaltung, Band 72, 150 p

  • Vestol G, Colin F, Loubère M (1999) Influence of progeny and initial stand density on the relationship between diameter at breast height and knot diameter of Picea abies. Scand J For Res 14:470–480

    Article  Google Scholar 

  • Wignall TA, Browning G, Mackenzie KAD (1987) The physiology of epicormic emergence in pedunculate oak (Quercus robur L.): responses to partial notch girdling in thinned and unthinned stands. Forestry 60:45–56

    Article  Google Scholar 

  • Yokoi S, Yamaguchi K (1996) Origin of epicormic branches and effect of thinning on their development in Quercus mongolica var. grosseserrata. J Jpn For Soc 78:169–174

    Google Scholar 

Download references

Acknowledgments

We thank Bruno Chopard, forest engineer at “Office National des Forêts”, for providing wood material and for managing the experimental stand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Colin.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, F., Mothe, F., Freyburger, C. et al. Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives. Trees 24, 953–967 (2010). https://doi.org/10.1007/s00468-010-0466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0466-1

Keywords

Navigation