Skip to main content
Log in

WT1-related disorders: more than Denys-Drash syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Historically, specific mutations in WT1 gene have been associated with distinct syndromes based on phenotypic characteristics, including Denys-Drash syndrome (DDS), Frasier syndrome (FS), Meacham syndrome, and WAGR syndrome. DDS is classically defined by the triad of steroid-resistant nephrotic syndrome (SRNS) onset in the first year of life, disorders of sex development (DSD), and a predisposition to Wilms tumor (WT). Currently, a paradigm shift acknowledges a diverse spectrum of presentations beyond traditional syndromic definitions. Consequently, the concept of WT1-related disorders becomes more precise. A genotype–phenotype correlation has been established, emphasizing that the location and type of WT1 mutations significantly influence the clinical presentation, the condition severity, and the chronology of patient manifestations. Individuals presenting with persistent proteinuria, with or without nephrotic syndrome, and varying degrees of kidney dysfunction accompanied by genital malformations should prompt suspicion of WT1 mutations. Recent genetic advances enable a more accurate estimation of malignancy risk in these patients, facilitating a conservative nephron-sparing surgery (NSS) approach in select cases, with a focus on preserving residual kidney function and delaying nephrectomies. Other key management strategies include kidney transplantation and addressing DSD and gonadoblastoma. In summary, recent genetic insights underscore the imperative to implement individualized, integrated, and multidisciplinary management strategies for WT1-related disorders. This approach is pivotal in optimizing patient outcomes and addressing the complexities associated with these diverse clinical manifestations.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denys P, Malvaux P, Van Den Berghe H, Tanghe WPW (1967) Association of an anatomo-pathological syndrome of male pseudohermaphroditism, Wilms’ tumor, parenchymatous nephropathy and XX/XY mosaicism. Arch Fr Pediatr 24:729–739

    CAS  PubMed  Google Scholar 

  2. Drash A, Sherman F, Hartmann WHBR (1970) A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr 76:585–593. https://doi.org/10.1016/s0022-3476(70)80409-7

    Article  CAS  PubMed  Google Scholar 

  3. Büscher AK, Weber S (2012) Educational paper: the podocytopathies. Eur J Pediatr 171:1151–1160. https://doi.org/10.1007/s00431-011-1668-2

    Article  PubMed  Google Scholar 

  4. Sharief SN, Hefni NA, Alzahrani WA, Nazer II, Bayazeed MA, Alhasan KA, Safdar OY, El-Desoky SM, Kari JA (2019) Genetics of congenital and infantile nephrotic syndrome. World J Pediatr 15:198–203. https://doi.org/10.1007/s12519-018-00224-0

    Article  CAS  PubMed  Google Scholar 

  5. Little M, Wells C (1997) A clinical overview of Wt1 gene mutations. Hum Mutat 9:209–225. https://doi.org/10.1002/(SICI)1098-1004(1997)9:3%3c209::AID-HUMU2%3e3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  6. Wilm B, Muñoz-Chapuli R (2016) The role of WT1 in embryonic development and normal organ homeostasis. Methods Mol Biol 1467:23–39. https://doi.org/10.1007/978-1-4939-4023-3_3

    Article  PubMed  Google Scholar 

  7. Trautmann A, Bodria M, Ozaltin F, Gheisari A, Melk A, Azocar M, Anarat A, Caliskan S, Emma F, Gellermann J, Oh J, Baskin E, Ksiazek J, Remuzzi G, Erdogan O, Akman S, Dusek J, Davitaia T, Özkaya O, Papachristou F, Firszt-Adamczyk A, Urasinski T, Testa S, Krmar RT, Hyla-Klekot L, Pasini A, Özcakar ZB, Sallay P, Cakar N, Galanti M, Terzic J, Aoun B, Afonso AC, Szymanik-Grzelak H, Lipska BS, Schnaidt S, Schaefer F (2015) Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the podoNet registry cohort. Clin J Am Soc Nephrol 10:592–600. https://doi.org/10.2215/CJN.06260614

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trautmann A, Lipska-Ziȩtkiewicz BS, Schaefer F, Csaicsich D, Azocar M, Quiroz L, Higuita LMS, Dušek J, Ranchin B, Fischbach M, Davitaia T, Gellermann J, Habbig S, Oh J, Kemper MJ, Melk A, Staude H, Printza N, Sallay P, Gheissari A, Noris M, Pasini A, Ghiggeri GM, Bodria M, Ardissino G, Benetti E, Emma F, Aoun B, Abou-Jaoudé P, Jankauskiene A, Wasilewska A, Gacka E, Zurowska A, Drozdz D, Tkaczyk M, Stanczyk M, Borzecka H, Silska M, Jarmolinski T, Firszt-Adamczyk A, Litwin M, Kuzma-Mroczkowska E, Szymanik-Grzelak H, Medynska A, Szczepanska M, Afonso AC, Jardim H, Lungu A, Peco-Antic A, Bogdanovic R, Krmar RT, Tschumi S, Saeed B, Anarat A, Balat A, Baskin ZE, Cakar N, Erdogan O, Özcakar B, Ozaltin F, Sakallioglu O, Soylemezoglu O, Akman S, Gok F, Caliskan S, Candan C, Yilmaz A, Mir S, Akil I, Ertan P, Özkaya O, Kalyoncu M, Simkova E, Eid LA, Fomina S, Sobko R (2018) Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the podonet registry. Front Pediatr 6:200. https://doi.org/10.3389/fped.2018.00200

    Article  Google Scholar 

  9. Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJA, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91:937–947. https://doi.org/10.1016/j.kint.2016.10.013

    Article  PubMed  Google Scholar 

  10. Chernin G, Vega-Warner V, Schoeb DS, Heeringa SF, Ovunc B, Saisawat P, Cleper R, Ozaltin F, Hildebrandt F, Arbeiter A, Bakkalogulu A, Benz M, Bockenhauer D, Bogdanovic R, Chandha V, Ettenger R, Ghossein C, Goldberg A, Heiliczer J, Hooper D, Hoppe B, Jenkins R, Kaplan B, Kemper MJ, Konrad M, London R, Mache C, Mansoor O, Mayr M, Neuhaus T, Plank C, Reusz G, Rinat C, Seeman T, Strecker M, Taranta-Janusz K, Weigel F, Zolotnitskaya A (2010) Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin J Am Soc Nephrol 5:1655–1662. https://doi.org/10.2215/CJN.09351209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lipsk BS, Lipsk BS, Ranchin B, Iatropoulos P, Gellermann J, Melk A, Ozaltin F, Ozaltin F, Caridi G, Seeman T, Seeman T, Tory K, Jankauskiene A, Zurowska A, Szczepanska M, Wasilewska A, Harambat J, Trautmann A, Peco-Antic A, Borzecka H, Moczulska A, Saeed B, Bogdanovic R, Kalyoncu M, Simkova E, Erdogan O, Vrljicak K, Teixeira A, Azocar M, Schaefer F, Quiroz L, Higuita LMS, Dušek J, Fischbach M, Davitaia T, Oh J, Wigger M, Fotios P, Sallay P, Gheissari A, Remuzzi G, Pasini A, Ghiggeri GM, Ardissino G, Benetti E, Emma F, Aoun B, Abou-Jaoudé P, Hyla-Klekot L, Drozdz D, Tkaczyk M, Silska M, Jarmolinski T, Firszt-Adamczyk A, Ksiazek J, Kuzma-Mroczkowska E, Medynska A, Afonso AC, Jardim H, Krmar RT, Simonetti GD, Anarat A, Bakkaloglu A, Balat A, Baskin ZE, Cakar N, Özcakar B, Sakallioglu O, Soylemezoglu O, Akman S, Gok F, Caliskan S, Candan C, Emre S, Mir S, Akil I, Ertan P, Özkaya O, Alhammadi E, Sobko R (2014) Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int 85:1169–1178. https://doi.org/10.1038/ki.2013.519

    Article  CAS  Google Scholar 

  12. Lipska-Ziętkiewicz BS. WT1 Disorder (2021) In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556455/

  13. Pelletier J, Bruening W, Li FP, Haber DA, DE Glaser TH (1991) WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353:431–434. https://doi.org/10.1038/353431a0

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Coppes MJ, Liefers GJ, Higuchi M, Zinn AB, Balfe JWWB (1992) Inherited WT1 mutation in Denys-Drash syndrome. Cancer Res 52:6125–6128

    CAS  PubMed  Google Scholar 

  15. Baird PN, Santos A, Groves N, Jadresic LCJ (1992) Constitutional mutations in the WT1 gene in patients with Denys-Drash syndrome. Hum Mol Genet 1:301–305

    Article  CAS  PubMed  Google Scholar 

  16. Mucha B, Ozaltin F, Hinkes BG, Hasselbacher K, Ruf RG, Schultheiss M, Hangan D, Hoskins BE, Everding AS, Bogdanovic R, Seeman T, Hoppe B, Hildebrandt F, Members of the APN Study Group (2006) Mutations in the Wilms’ tumor 1 gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. Pediatr Res 59:325–331. https://doi.org/10.1203/01.pdr.0000196717.94518.f0

    Article  CAS  PubMed  Google Scholar 

  17. Nagano C, Takaoka Y, Kamei K, Hamada R, Ichikawa D, Tanaka K, Aoto Y, Ishiko S, Rossanti R, Sakakibara N, Okada E, Horinouchi T, Yamamura T, Tsuji Y, Noguchi Y, Ishimori S, Nagase H, Ninchoji T, Iijima KNK (2021) Genotype-phenotype correlation in WT1 exon 8 to 9 missense variants. Kidney Int Repo 6:2114–2121. https://doi.org/10.1016/j.ekir.2021.05.009

    Article  Google Scholar 

  18. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta PGM (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 ?/-KTS splice isoforms. Hum Mol Genet 7:709–714. https://doi.org/10.1093/hmg/7.4.709

    Article  CAS  PubMed  Google Scholar 

  19. Lehnhardt A, Karnatz C, Ahlenstiel-Grunow T, Benz K, Benz MR, Budde K, Büscher AK, Fehr T, Feldkötter M, Graf N, Höcker B, Jungraithmayr T, Klaus G, Koehler B, Konrad M, Kranz B, Montoya CR, Müller D, Neuhaus TJ, Oh J, Pape L, Pohl M, Royer-Pokora B, Querfeld U, Schneppenheim R, Staude H, Spartà G, Timmermann K, Wilkening F, Wygoda S, Bergmann C, Kemper MJ (2015) Clinical and molecular characterization of patients with heterozygous mutations in Wilms tumor suppressor gene 1. Clin J Am Soc Nephrol 10:825–831. https://doi.org/10.2215/CJN.10141014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn YH, Park EJ, Kang HG, Kim SH, Cho HY, Il SJ, Lee JH, Park YS, Kim KS, Ha IS, HI Cheong (2017) Genotype–phenotype analysis of pediatric patients with WT1 glomerulopathy. Pediatr Nephrol 32:81–89. https://doi.org/10.1007/s00467-016-3395-4

    Article  PubMed  Google Scholar 

  21. Falcone MP, Pritchard-Jones K, Brok J, Mifsud W, Williams RD, Nakata K, Tugnait S, Al-Saadi R, Side L, Anderson J, Duncan C, Marks SD, Bockenhauer D, Chowdhury T (2022) Long-term kidney function in children with Wilms tumour and constitutional WT1 pathogenic variant. Pediatr Nephrol 37:821–832. https://doi.org/10.1007/s00467-021-05125-5

    Article  PubMed  Google Scholar 

  22. Arroyo-Parejo Drayer P, Seeherunvong W, Katsoufis CP, DeFreitas MJ, Seeherunvong T, Chandar J, Abitbol CL (2022) Spectrum of clinical manifestations in children with WT1 Mutation: case series and literature review. Front Pediatr 10:847295. https://doi.org/10.3389/fped.2022.847295

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nishi K, Inoguchi T, Kamei K, Hamada R, Hataya H, Ogura M, Sato M, Yoshioka T, Ogata K, Ito S, Nakanishi K, Nozu K, Hamasaki Y, Ishikura K (2019) Detailed clinical manifestations at onset and prognosis of neonatal-onset Denys-Drash syndrome and congenital nephrotic syndrome of the Finnish type. Clin Exp Nephrol 23:1058–1065. https://doi.org/10.1007/s10157-019-01732-7

    Article  CAS  PubMed  Google Scholar 

  24. García-Acero M, Moreno O, Suárez F, Rojas A (2020) Disorders of sexual development: current status and progress in the diagnostic approach. Curr Urol 13:169–178. https://doi.org/10.1159/000499274

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCann-Crosby B, Mansouri R, Dietrich JE, McCullough LB, Sutton VR, Austin EG, Schlomer B, Roth DR, Karaviti L, Gunn S, Hicks MJ, Macias CG (2014) State of the art review in gonadal dysgenesis: challenges in diagnosis and management. Int J Pediatr Endocrinol 2014:4. https://doi.org/10.1186/1687-9856-2014-4

    Article  Google Scholar 

  26. Swyer GI (1955) Male pseudohermaphroditism: a hitherto undescribed form. Br Med J 2:709–712. https://doi.org/10.1136/bmj.2.4941.709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roca N, Munõz M, Cruz A, Vilalta R, Lara E, Ariceta G (2019) Long-term outcome in a case series of Denys-Drash syndrome. Clin Kidney J 12:836–839. https://doi.org/10.1093/ckj/sfz022

    Article  PubMed  PubMed Central  Google Scholar 

  28. Melo KF, Martin RM, Costa EM, Carvalho FM, Jorge AA, Arnhold IJ et al (2002) An unusual phenotype of Frasier syndrome due to IVS9 +4C>T mutation in the WT1 gene: predominantly male ambiguous genitalia and absence of gonadal dysgenesis. J Clin Endocrinol Metab 87:2500–2505. https://doi.org/10.1210/jcem.87.6.8521

    Article  CAS  PubMed  Google Scholar 

  29. Kohler B, Schumacher V, l’Allemand D, Royer-Pokora B, Grüters A (2001) Germline wilms tumor suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms tumor or nephropathy. J Pediatr 138:421–424. https://doi.org/10.1067/mpd.2001.112512

    Article  CAS  PubMed  Google Scholar 

  30. Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F et al (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470. https://doi.org/10.1038/ng1297-467

    Article  CAS  PubMed  Google Scholar 

  31. Kitsiou-Tzeli S, Deligiorgi M, Malaktari-Skarantavou S, Vlachopoulos C, Megremis S, Fylaktou I, Traeger-Synodinos J, Kanaka-Gantenbein C, Stefanadis C, Kanavakis E (2012) Sertoli cell tumor and gonadoblastoma in an untreated 29-year-old 46, XY phenotypic male with Frasier syndrome carrying a WT1 IVS9+4C>T mutation. Hormones (Athens) 11:361–367. https://doi.org/10.14310/horm.2002.1366

    Article  Google Scholar 

  32. Chu A, Heck JE, Ribeiro KB, Brennan P, Boffetta P, Buffler P et al (2010) Wilms’ tumour: a systematic review of risk factors and meta-analysis. Paediatr Perinat Epidemiol 24:449–469. https://doi.org/10.1111/j.1365-3016.2010.01133.x

    Article  PubMed  Google Scholar 

  33. Diller L, Ghahremani M, Morgan J, Grundy P, Reeves C, Breslow N, Green D, Neuberg D, Pelletier J et al (1998) Constitutional WT1 mutations in Wilms’ tumor patients. J Clin Oncol 16:3634–3640. https://doi.org/10.1200/JCO.1998.16.11.3634

    Article  CAS  PubMed  Google Scholar 

  34. Little SE, Hanks SP, King-Underwood L, Jones C, Rapley EA, Rahman N et al (2004) Frequency and heritability of WT1 mutations in nonsyndromic Wilms’ tumor patients: a UK Children’s Cancer Study Group Study. J Clin Oncol 22:4140–4146. https://doi.org/10.1200/JCO.2004.02.136

    Article  CAS  PubMed  Google Scholar 

  35. Segers H, Kersseboom R, Alders M, Pieters R, Wagner A et al (2012) Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients. Eur J Cancer 48:3249–3256. https://doi.org/10.1016/j.ejca.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  36. Liu EK, Suson KD (2020) Syndromic Wilms tumor: a review of predisposing conditions, surveillance and treatment. Transl Androl Urol 9:2370–2381. https://doi.org/10.21037/tau.2020.03.27

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lange J, Peterson SM, Takashima JR, Grigoriev Y, Ritchey ML, Shamberger RC, Beckwith JB, Perlman E, Green DM et al (2011) Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor. J Urol 186:378–386. https://doi.org/10.1016/j.juro.2011.03.110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Breslow NE, Collins AJ, Ritchey ML, Grigoriev YA, Peterson SM et al (2005) End stage renal disease in patients with Wilms tumor: results from the National Wilms Tumor Study Group and the United States Renal Data System. J Urol 174:1972–1975. https://doi.org/10.1097/01.ju.0000176800.00994.3a

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sherbotie JR, van Heyningen V, Axton R, Williamson K, Finn LS et al (2000) Hemolytic uremic syndrome associated with Denys-Drash syndrome. Pediatr Nephrol 14:1092–1097. https://doi.org/10.1007/s004670000389

    Article  CAS  PubMed  Google Scholar 

  40. Alge JL, Wenderfer SE, Hicks J, Bekheirnia MR, Schady DA, Kain JS et al (2017) Hemolytic uremic syndrome as the presenting manifestation of WT1 mutation and Denys-Drash syndrome: a case report. BMC Nephrol 18:243. https://doi.org/10.1186/s12882-017-0643-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng C, Chen L, Wen S, Lin Z et al (2020) Case report: Denys-Drash syndrome with WT1 causative variant presenting as atypical hemolytic uremic syndrome. Front Pediatr 8:605889. https://doi.org/10.3389/fped.2020.605889

    Article  PubMed  PubMed Central  Google Scholar 

  42. Anderson E, Aldridge M, Turner R, Harraway J, McManus S, Stewart A, Borzi P, Trnka P, Burke J, Coman D (2022) WT1 complete gonadal dysgenesis with membranoproliferative glomerulonephritis: case series and literature review. Pediatr Nephrol 37:2369–2374. https://doi.org/10.1007/s00467-022-05421-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Denamur E, Bocquet N, Baudouin V, Da Silva F, Veitia R, Peuchmaur M, Elion J, Gubler MC, Fellous M, Niaudet P et al (2000) WT1 splice-site mutations are rarely associated with primary steroid-resistant focal and segmental glomerulosclerosis. Kidney Int 57:1868–1872

    Article  CAS  PubMed  Google Scholar 

  44. Suri M, Kelehan P, O’Neill D, Vadeyar S, Grant J, Ahmed SF, Tolmie J, McCann E, Lam W, Smith S, Fitzpatrick D, Hastie ND et al (2007) WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac and diaphragmatic malformations. Am J Med Genet A 143A:2312–2320

    Article  CAS  PubMed  Google Scholar 

  45. Lipska-Ziętkiewicz BS, Ozaltin F, Hölttä T, Bockenhauer D, Bérody S, Levtchenko E, Vivarelli M, Webb H, Haffner D, Schaefer F, Boyer O (2020) Genetic aspects of congenital nephrotic syndrome: a consensus statement from the ERKNet–ESPN inherited glomerulopathy working group. Eur J Hum Genet 28:1368–1378. https://doi.org/10.1038/s41431-020-0642-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reynolds BC, Oswald RJA (2019) Diagnostic and management challenges in congenital nephrotic syndrome. Pediatric Health Med Ther 10:157–167. https://doi.org/10.2147/phmt.s193684

    Article  CAS  Google Scholar 

  47. Ukarapong S, Berkovitz G, McElreavey K, Bashamboo ABY (2016) Early recognition of gonadal dysgenesis in congenital nephrotic syndrome. Clin Nephrol 86:341–344

    Article  PubMed  Google Scholar 

  48. Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L, Müller-Deile J, Becker JU, Cano F, Xu H, Lim YN, Smoyer W, Anochie I, Nakanishi K, Hodson E, Haffner D, International Pediatric Nephrology Association (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35:1529–1561

    Article  PubMed  PubMed Central  Google Scholar 

  49. Boyer O, Schaefer F, Haffner D, Bockenhauer D, Hölttä T, Bérody S, Webb H, Heselden M, Lipska-Zie˛tkiewicz BS, Ozaltin F, Levtchenko E, Vivarelli M (2021) Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nat Rev Nephrol 17:277–289. https://doi.org/10.1038/s41581-020-00384-1

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mussa A, Duffy KA, Carli D, Griff JR, Fagiano R, Kupa J, Brodeur GM, Ferrero GB et al (2019) The effectiveness of Wilms tumor screening in Beckwith-Wiedemann spectrum. Cancer Res Clin Oncol 145:3115–3123. https://doi.org/10.1007/s00432-019-03038-3

    Article  Google Scholar 

  51. Hol JA, Jewell R, Chowdhury T, Duncan C, Nakata K, Oue T, Gauthier-Villars M, Littooij AS, Kaneko Y, Graf N, Bourdeaut F, van den Heuvel-Eibrink MM, Pritchard-Jones K, Maher ER, Kratz CP, Jongmans MCJ (2021) Wilms tumour surveillance in at-risk children: literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur J Cancer 153:51–63. https://doi.org/10.1016/j.ejca.2021.05.014

    Article  CAS  PubMed  Google Scholar 

  52. Jalanko H (2009) Congenital nephrotic syndrome. Pediatr Nephrol 24:2121–2128

    Article  PubMed  Google Scholar 

  53. Hu M, Fletcher J, McCahon E, Catchpoole D, Zhang GY, Wang YM et al (2013) Bilateral Wilms tumor and early presentation in pediatric patients is associated with the truncation of the Wilms tumor 1 protein. J Pediatr 163:224–229. https://doi.org/10.1016/j.jpeds.2012.12.080

    Article  CAS  PubMed  Google Scholar 

  54. Cozzi DA, Zani A (2006) Nephron-sparing surgery in children with primary renal tumor: indications and results. Semin Pediatr Surg 15:3–9. https://doi.org/10.1053/j.sempedsurg.2005.11.002

    Article  PubMed  Google Scholar 

  55. Theilen TM, Braun Y, Bochennek K, Rolle U, Fiegel HC, Friedmacher F (2022) Multidisciplinary treatment strategies for wilms tumor: recent advances, technical innovations and future directions. Front Pediatr 10:852185. https://doi.org/10.3389/fped.2022.852185

    Article  Google Scholar 

  56. Gariépy-Assal L, Gilbert RD, Žiaugra A, Foster BJ (2018) Management of Denys-Drash syndrome: a case series based on an international survey. Clin Nephrol Case Stud 12:36–44. https://doi.org/10.5414/cncs109515

    Article  Google Scholar 

  57. Auber F, Jeanpierre C, Denamur E, Jaubert F, Schleiermacher G, Patte C, Cabrol S, Leverger G, Nihoul-Fékété C, Sarnacki S (2009) Management of Wilms tumors in Drash and Frasier syndromes. Pediatr Blood Cancer 52:55–59

    Article  CAS  PubMed  Google Scholar 

  58. Auber F, Lortat-Jacob S, Sarnacki S, Jaubert F, Salomon R, Thibaud E, Jeanpierre C, Nihoul-Fékété C (2003) Surgical management and genotype/phenotype correlations in WT1 gene-related diseases (Drash, Frasier syndromes). J Pediatr Surg 38:124–129. https://doi.org/10.1053/jpsu.2003.50025

    Article  CAS  PubMed  Google Scholar 

  59. Thomas CP, Mansilla MA, Sompallae R, Mason SO, Nishimura CJ, Kimble MJ, Campbell CA, Kwitek AE, Darbro BW, Stewart ZA, Smith RJH (2017) Screening of living kidney donors for genetic diseases using a comprehensive genetic testing strategy. Am J Transplant 17:401–410. https://doi.org/10.1111/ajt.13970

    Article  CAS  PubMed  Google Scholar 

  60. Alberú J, Bakr MA, Gallon L, Garvey CA, Guleria S, Li PK, Segev DL, Taler SJ, Tanabe K, Wright L, Zeier MG, Cheung M et al (2017) Summary of Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline on the evaluation and care of living kidney donors. Transplantation 101:1783–1792. https://doi.org/10.1097/TP.0000000000001770

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kist-Van Holthe JE, Ho PL, Stablein D, Harmon WE, Baum MA (2005) Outcome of renal transplantation for Wilms’ tumor and Denys-Drash syndrome: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant 9:305–310. https://doi.org/10.1111/j.1399-3046.2005.00311.x

    Article  PubMed  Google Scholar 

  62. Rudin C, Pritchard J, Fernando ON, Duffy PG, Trompeter RS (1998) Renal transplantation in the management of bilateral Wilms’ tumour (BWT) and of Denys-Drash syndrome (DDS). Nephrol Dial Transplant 13:1506–1510. https://doi.org/10.1093/ndt/13.6.1506

    Article  CAS  PubMed  Google Scholar 

  63. Morello W, Proverbio E, Puccio G, Montini G (2023) A systematic review and meta-analysis of the rate and risk factors for post-transplant disease recurrence in children with steroid resistant nephrotic syndrome. Kidney Int Rep 8:254–264. https://doi.org/10.1016/j.ekir.2022.10.030

    Article  Google Scholar 

  64. Pyle LC, Nathanson KL (2017) A practical guide for evaluating gonadal germ cell tumor predisposition in differences of sex development. Am J Med Genet 175:304–314

    Article  PubMed  Google Scholar 

  65. de la Calle CM, Kim S, Baskin LS (2020) Diagnosis and treatment of the intra-abdominal gonad in the pediatric population: testes, ovaries, dysgenetic gonads, streaks, and ovotestes. J Pediatr Surg 55:2480–2491. https://doi.org/10.1016/j.jpedsurg.2020.02.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Lopez-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 152 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gonzalez, M., Ariceta, G. WT1-related disorders: more than Denys-Drash syndrome. Pediatr Nephrol (2024). https://doi.org/10.1007/s00467-024-06302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-024-06302-y

Keywords

Navigation