Skip to main content
Log in

Urine biomarkers of chronic kidney damage and renal functional decline in childhood-onset systemic lupus erythematosus

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Objectives

To delineate urine biomarkers that reflect kidney structural damage and predict renal functional decline in pediatric lupus nephritis (LN).

Methods

In this prospective study, we evaluated kidney biopsies and urine samples of 89 patients with pediatric LN. Urinary levels of 10 biomarkers [adiponectin, ceruloplasmin, kidney injury molecule-1, monocyte chemotactic protein-1, neutrophil gelatinase-associated lipocalin, osteopontin, transforming growth factor-ß (TGFß), vitamin-D binding protein, liver fatty acid binding protein (LFABP), and transferrin] were measured. Regression analysis was used to identify individual and combinations of biomarkers that determine LN damage status [NIH-chronicity index (NIH-CI) score ≤ 1 vs. ≥ 2] both individually and in combination, and biomarker levels were compared for patients with vs. without renal functional decline, i.e., a 20% reduction of the glomerular filtration rate (GFR) within 12 months of a kidney biopsy.

Results

Adiponectin, LFABP, and osteopontin levels differed significantly with select histological damage features considered in the NIH-CI. The GFR was associated with NIH-CI scores [Pearson correlation coefficient (r) = − 0.49; p < 0.0001] but not proteinuria (r = 0.20; p > 0.05). Similar to the GFR [area under the ROC curve (AUC) = 0.72; p < 0.01], combinations of osteopontin and adiponectin levels showed moderate accuracy [AUC = 0.75; p = 0.003] in discriminating patients by LN damage status. Renal functional decline occurred more commonly with continuously higher levels of the biomarkers, especially of TGFß, transferrin, and LFABP.

Conclusion

In combination, urinary levels of adiponectin and osteopontin predict chronic LN damage with similar accuracy as the GFR. Ongoing LN activity as reflected by high levels of LN activity biomarkers heralds renal functional decline.

Key messages

• Levels of osteopontin and adiponectin measured at the time of kidney biopsy are good predictors of histological damage with lupus nephritis.

• Only about 20% of children with substantial kidney damage from lupus nephritis will have an abnormally low urine creatinine clearance.

• Continuously high levels of biomarkers reflecting lupus nephritis activity are risk factors of declining renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maroz N, Segal MS (2013) Lupus nephritis and end-stage kidney disease. Am J Med Sci 346:319–323

    Article  Google Scholar 

  2. Sexton DJ, Reule S, Solid C, Chen SC, Collins AJ, Foley RN (2015) ESRD from lupus nephritis in the United States, 1995-2010. Clin J Am Soc Nephrol 10:251–259

    Article  Google Scholar 

  3. Livingston B, Bonner A, Pope J (2012) Differences in autoantibody profiles and disease activity and damage scores between childhood- and adult-onset systemic lupus erythematosus: a meta-analysis. Semin Arthritis Rheum 42:271–280

    Article  CAS  Google Scholar 

  4. Mina R, Brunner HI (2013) Update on differences between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Res Ther 15:218

    Article  Google Scholar 

  5. Hanaoka H, Yamada H, Kiyokawa T, Iida H, Suzuki T, Yamasaki Y, Ooka S, Nagafuchi H, Okazaki T, Ichikawa D, Shirai S, Shibagaki Y, Koike J, Ozaki S (2017) Lack of partial renal response by 12 weeks after induction therapy predicts poor renal response and systemic damage accrual in lupus nephritis class III or IV. Arthritis Res Ther 19:4

    Article  Google Scholar 

  6. Esdaile JM, Levinton C, Federgreen W, Hayslett JP, Kashgarian M (1989) The clinical and renal biopsy predictors of long-term outcome in lupus nephritis: a study of 87 patients and review of the literature. Q J Med 72:779–833

    CAS  PubMed  Google Scholar 

  7. Dall’Era M, Cisternas MG, Smilek DE, Straub L, Houssiau FA, Cervera R, Rovin BH, Mackay M (2015) Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the euro-lupus nephritis cohort. Arthritis Rheumatol 67:1305–1313

    Article  Google Scholar 

  8. Bennett M, Brunner HI (2013) Biomarkers and updates on pediatrics lupus nephritis. Rheum Dis Clin N Am 39:833–853

    Article  Google Scholar 

  9. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15:241–250

    Article  Google Scholar 

  10. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M, International Society of Nephrology Working Group on the Classification of Lupus N, Renal Pathology Society Working Group on the Classification of Lupus N (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65:521–530

    Article  Google Scholar 

  11. Austin HA 3rd, Muenz LR, Joyce KM, Antonovych TT, Balow JE (1984) Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int 25:689–695

    Article  Google Scholar 

  12. Brunner HI, Bennett MR, Mina R, Suzuki M, Petri M, Kiani AN, Pendl J, Witte D, Ying J, Rovin BH, Devarajan P (2012) Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Rheum 64:2687–2697

    Article  CAS  Google Scholar 

  13. Brunner HI, Bennett MR, Abulaban K, Klein-Gitelman MS, O’Neil KM, Tucker L, Ardoin SP, Rouster-Stevens KA, Onel KB, Singer NG, Anne Eberhard B, Jung LK, Imundo L, Wright TB, Witte D, Rovin BH, Ying J, Devarajan P (2016) Development of a novel renal activity index of lupus nephritis in children and young adults. Arthritis Care Res 68:1003–1011

    Article  CAS  Google Scholar 

  14. Brunner HI, Bennett MR, Gulati G, Abulaban K, Klein-Gitelman MS, Ardoin SP, Tucker LB, Rouster-Stevens KA, Witte D, Ying J, Devarajan P (2017) Urine biomarkers to predict response to lupus nephritis therapy in children and young adults. J Rheumatol 44:1239–1248

    Article  Google Scholar 

  15. Gulati G, Bennett MR, Abulaban K, Song H, Zhang X, Ma Q, Brodsky SV, Nadasdy T, Haffner C, Wiley K, Ardoin SP, Devarajan P, Ying J, Rovin BH, Brunner HI (2017) Prospective validation of a novel renal activity index of lupus nephritis. Lupus 26:927–936

    Article  CAS  Google Scholar 

  16. Rovin BH, Song H, Hebert LA, Nadasdy T, Nadasdy G, Birmingham DJ, Yung Yu C, Nagaraja HN (2005) Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int 68:1825–1833

    Article  CAS  Google Scholar 

  17. Saraheimo M, Forsblom C, Thorn L, Waden J, Rosengard-Barlund M, Heikkila O, Hietala K, Gordin D, Frystyk J, Flyvbjerg A, Groop PH, FinnDiane Study G (2008) Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care 31:1165–1169

    Article  CAS  Google Scholar 

  18. Jerebtsova M, Saraf SL, Lin X, Lee G, Adjei EA, Kumari N, Afangbedji N, Raslan R, McLean C, Gordeuk VR (2018) Identification of ceruloplasmin as a biomarker of chronic kidney disease in urine of sickle cell disease patients by proteomic analysis. Am J Hematol 93:E45–E47

    Article  Google Scholar 

  19. Nielsen S, Schjoedt K, Astrup A, Tarnow L, Lajer M, Hansen P, Parving HH, Rossing P (2010) Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabet Med 27:1144–1150

    Article  CAS  Google Scholar 

  20. Abulaban KM, Song H, Zhang X, Kimmel PL, Kusek JW, Nelson RG, Feldman HI, Vasan RS, Ying J, Mauer M, Nelsestuen GL, Bennett M, Brunner HI, Rovin BH (2016) Predicting decline of kidney function in lupus nephritis using urine biomarkers. Lupus 25:1012–1018

    Article  CAS  Google Scholar 

  21. Chan RWY, Lai FMM, Li EKM, Tam LS, Wong TYH, Szeto CYK, Li PKT, Szeto CC (2004) Expression of chemokine and fibrosing factor messenger RNA in the urinary sediment of patients with lupus nephritis. Arthritis Rheum 50:2882–2890

    Article  CAS  Google Scholar 

  22. Yang CC, Hsieh SC, Li KJ, Wu CH, Lu MC, Tsai CY, Yu CL (2012) Urinary neutrophil gelatinase-associated lipocalin is a potential biomarker for renal damage in patients with systemic lupus erythematosus. J Biomed Biotechnol 2012:759313

    PubMed  PubMed Central  Google Scholar 

  23. Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M, Ito S (2003) Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complicat 17:11–15

    Article  Google Scholar 

  24. Bolignano D, Basile G, Parisi P, Coppolino G, Nicocia G, Buemi M (2009) Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res 12:7–14

    Article  CAS  Google Scholar 

  25. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M (2008) Neutrophil gelatinase–associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52:595–605

    Article  CAS  Google Scholar 

  26. D’Amico G (1998) Tubulo-interstitial damage in glomerular diseases: its role in the progression of the renal damage. Nephrol Dial Transplant 13:80–85

    Article  Google Scholar 

  27. Honkanen E, Teppo AM, Tornroth T, Groop PH, Gronhagen-Riska C (1997) Urinary transforming growth factor-beta 1 in membranous glomerulonephritis. Nephrol Dial Transplant 12:2562–2568

    Article  CAS  Google Scholar 

  28. Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17

    Article  CAS  Google Scholar 

  29. Mirković K, Doorenbos CR, Dam WA, Heerspink HJL, Slagman MC, Nauta FL, Kramer AB, Gansevoort RT, van den Born J, Navis G (2013) Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS One 8:e55887

    Article  Google Scholar 

  30. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  CAS  Google Scholar 

  31. Silva CA, Avcin T, Brunner HI (2012) Taxonomy for systemic lupus erythematosus with onset before adulthood. Arthrit Care Res 64:1787–1793

    Article  Google Scholar 

  32. Mina R, Abulaban K, Klein-Gitelman MS, Eberhard BA, Ardoin SP, Singer N, Onel K, Tucker L, O’Neil K, Wright T, Brooks E, Rouster-Stevens K, Jung L, Imundo L, Rovin B, Witte D, Ying J, Brunner HI (2016) Validation of the lupus nephritis clinical indices in childhood-onset systemic lupus erythematosus. Arthritis Care Res 68:195–202

    Article  Google Scholar 

  33. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  Google Scholar 

  34. Chaturvedi S, Farmer T, Kapke GF (2009) Assay validation for KIM-1: human urinary renal dysfunction biomarker. Int J Biol Sci 5:128–134

    Article  CAS  Google Scholar 

  35. Bennett MR, Ma Q, Ying J, Devarajan P, Brunner H (2017) Effects of age and gender on reference levels of biomarkers comprising the pediatric renal activity index for lupus nephritis (p-RAIL). Pediatr Rheumatol Online J 15:74. https://doi.org/10.1186/s12969-017-0202-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fischer JE, Bachmann LM, Jaeschke R (2003) A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med 29:1043–1051

    Article  Google Scholar 

  37. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135

    Article  Google Scholar 

  38. McGee S (2002) Simplifying likelihood ratios. J Gen Intern Med 17:646–649

    Article  Google Scholar 

  39. Kurata M, Okura T, Irita J, Enomoto D, Nagao T, Jotoku M, Miyoshi K, Higaki J (2010) The relationship between osteopontin and adiponectin in patients with essential hypertension. Clin Exp Hypertens 32:358–363

    Article  CAS  Google Scholar 

  40. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sasaki Y, Yamamoto Y, Miyazaki T, Ito MR, Nose M, Watanabe M (2006) Augmentation of osteopontin expression in renal tubuli is independent of a histopathological type of glomerular lesions in mouse lupus nephritis. Pathol Int 56:135–143

    Article  CAS  Google Scholar 

  42. Feldreich T, Carlsson AC, Helmersson-Karlqvist J, Risérus U, Larsson A, Lind L, Ärnlöv J (2017) Urinary osteopontin predicts incident chronic kidney disease, while plasma osteopontin predicts cardiovascular death in elderly men. Cardiorenal Med 7:245–254

    Article  CAS  Google Scholar 

  43. Quaglia M, Chiocchetti A, Cena T, Musetti C, Monti S, Clemente N, Dianzani U, Magnani C, Stratta P (2014) Osteopontin circulating levels correlate with renal involvement in systemic lupus erythematosus and are lower in ACE inhibitor-treated patients. Clin Rheumatol 33:1263–1271

    Article  Google Scholar 

  44. Brunner HI, Silverman ED, To T, Bombardier C, Feldman BM (2002) Risk factors for damage in childhood-onset systemic lupus erythematosus: cumulative disease activity and medication use predict disease damage. Arthritis Rheum 46:436–444

    Article  Google Scholar 

  45. Birmingham DJ, Rovin BH, Shidham G, Bissell M, Nagaraja HN, Hebert LA (2008) Relationship between albuminuria and total proteinuria in systemic lupus erythematosus nephritis: diagnostic and therapeutic implications. Clin J Am Soc Nephrol 3:1028–1033

    Article  Google Scholar 

  46. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE (2011) Biomarkers in chronic kidney disease: a review. Kidney Int 80:806–821

    Article  CAS  Google Scholar 

  47. Benito S, Sanchez-Ortega A, Unceta N, Jansen JJ, Postma G, Andrade F, Aldamiz-Echevarria L, Buydens LMC, Goicolea MA, Barrio RJ (2018) Plasma biomarker discovery for early chronic kidney disease diagnosis based on chemometric approaches using LC-QTOF targeted metabolomics data. J Pharm Biomed Anal 149:46–56

    Article  CAS  Google Scholar 

  48. Lv W, Fan F, Wang Y, Gonzalez-Fernandez E, Wang C, Yang L, Booz GW, Roman RJ (2018) Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 50:20–34

    Article  Google Scholar 

  49. Donnola SB, Piccone CM, Lu L, Batesole J, Little J, Dell KM, Flask CA (2018) Diffusion tensor imaging MRI of sickle cell kidney disease: initial results and comparison with iron deposition. NMR Biomed. https://doi.org/10.1002/nbm.3883

    Article  Google Scholar 

  50. Birmingham DJ, Rovin BH, Shidham G, Nagaraja HN, Zou X, Bissell M, Yu C-Y, Hebert LA (2007) Spot urine protein/creatinine ratios are unreliable estimates of 24 h proteinuria in most systemic lupus erythematosus nephritis flares. Kidney Int 72:865–870

    Article  CAS  Google Scholar 

  51. Aragon E, Resontoc L, Chan Y, Lau Y, Tan P, Loh H, Ng K, Yap H (2016) Long-term outcomes with multi-targeted immunosuppressive protocol in children with severe proliferative lupus nephritis. Lupus 25:399–406

    Article  CAS  Google Scholar 

  52. Sato V, Marques I, Goldenstein P, Carmo L, Jorge L, Titan S, Barros R, Woronik V (2012) Lupus nephritis is more severe in children and adolescents than in older adults. Lupus 21:978–983

    Article  CAS  Google Scholar 

  53. Malvar A, Pirruccio P, Alberton V, Lococo B, Recalde C, Fazini B, Nagaraja H, Indrakanti D, Rovin BH (2017) Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant 32:1338–1344

    Article  CAS  Google Scholar 

  54. Wenderfer SE, Lane JC, Shatat IF, von Scheven E, Ruth NM (2015) Practice patterns and approach to kidney biopsy in lupus: a collaboration of the Midwest pediatric nephrology consortium and the childhood arthritis and rheumatology research alliance. Pediatr Rheumatol Online J 13:26

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Ms. Kasha Wiley for data management and Lukasz Itert for development of the electronic data entry platform. We acknowledge sample management support by Dr. Fahad Abu-Azzah, Mr. Allen Watts, Ms. Jamie Meyers-Eaton, Ms. Monica Tsoras, and Ms. Mackenzie Gauck at the Cincinnati Children’s Hospital Medical Center. A special thanks to Prof. Susan Thompson for the support of the Rheumatology Research Core Center (1 P30 AR070549). We thank Christopher Haffner and Qing Ma for the measurement of various urine biomarkers.

Funding

This study is supported by grants from the NIH (U01 AR059509 to HB, P50 DK096418 to PD and HB, P30 AR070549-01 to Susan Thompson) and the Innovation Fund from CCHMC; the CCTST at the University of Cincinnati is funded by the National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program, grant 5UL1TR001425-03. The CTSA program is led by the NIH’s National Center for Advancing Translational Sciences (NCATS). The content of this website is solely the responsibility of the CCTST and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermine I. Brunner.

Ethics declarations

The study complied with the Declaration of Helsinki and was approved by the institutional review boards of all of the participating institutions.

Conflict of interest

The authors declare no conflict of interest.

Statement of informed consent

Written informed consent was obtained from the parents of the children at each institution.

Electronic supplementary material

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, H.I., Gulati, G., Klein-Gitelman, M.S. et al. Urine biomarkers of chronic kidney damage and renal functional decline in childhood-onset systemic lupus erythematosus. Pediatr Nephrol 34, 117–128 (2019). https://doi.org/10.1007/s00467-018-4049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-4049-5

Keywords

Navigation