Skip to main content

Advertisement

Log in

Extrarenal effects of FGF23

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular mortality, infections, and impaired cognitive function. It is characterized by excessively increased levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23) and a deficiency of its co-receptor Klotho. Despite the important physiological effect of FGF23 in maintaining phosphate homeostasis, there is increasing evidence that higher FGF23 levels are a risk factor for mortality and cardiovascular disease. FGF23 directly induces left ventricular hypertrophy via activation of the FGF receptor 4/calcineurin/nuclear factor of activated T cells signaling pathway. By contrast, the impact of FGF23 on endothelial function and the development of atherosclerosis are poorly understood. The results of recent experimental studies indicate that FGF23 directly impacts on hippocampal neurons and may thereby impair learning and memory function in CKD patients. Finally, it has been shown that FGF23 interferes with the immune system by directly acting on polymorphonuclear leukocytes and macrophages. In this review, we discuss recent data from clinical and experimental studies on the extrarenal effects of FGF23 with respect to the cardiovascular, central nervous, and immune systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruebner RL, Laney N, Kim JY, Hartung EA, Hooper SR, Radcliffe J, Furth SL (2016) Neurocognitive dysfunction in children, adolescents, and young adults with CKD. Am J Kidney Dis 67:567–575

    Article  PubMed  Google Scholar 

  3. Olauson H, Larsson TE (2013) FGF23 and Klotho in chronic kidney disease. Curr Opin Nephrol Hypertens 22:397–404

    Article  CAS  PubMed  Google Scholar 

  4. Scialla JJ, Wolf M (2014) Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol 10:268–278

    Article  CAS  PubMed  Google Scholar 

  5. Hensel N, Schon A, Konen T, Lubben V, Forthmann B, Baron O, Grothe C, Leifheit-Nestler M, Claus P, Haffner D (2016) Fibroblast growth factor 23 signaling in hippocampal cells: Impact on neuronal morphology and synaptic density. J Neurochem 137:756–769

    Article  CAS  PubMed  Google Scholar 

  6. Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, Unruh M, Zarbock A (2016) FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest 126:962–974

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kovesdy CP, Quarles LD (2016) FGF23 from bench to bedside. Am J Physiol Renal Physiol 310:F1168–1174

    Article  CAS  PubMed  Google Scholar 

  8. Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD (2012) A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One 7:e44161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149

    Article  CAS  PubMed  Google Scholar 

  10. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, Ogata E, Segawa H, Miyamoto K, Fukushima N (2005) Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    Article  CAS  PubMed  Google Scholar 

  11. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18:2683–2688

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–1095

    Article  CAS  PubMed  Google Scholar 

  14. de Borst MH, Vervloet MG, ter Wee PM, Navis G (2011) Cross talk between the renin-angiotensin-aldosterone system and vitamin D–FGF-23–klotho in chronic kidney disease. J Am Soc Nephrol 22:1603–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498

    Article  CAS  PubMed  Google Scholar 

  16. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  CAS  PubMed  Google Scholar 

  17. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of FGF23 in Hyp mice. Am J Physiol Endocrinol Metab 291:E38–49

    Article  CAS  PubMed  Google Scholar 

  18. Mace ML, Gravesen E, Hofman-Bang J, Olgaard K, Lewin E (2015) Key role of the kidney in the regulation of fibroblast growth factor 23. Kidney Int 88:1304–1313

    Article  CAS  PubMed  Google Scholar 

  19. Wolf M, White KE (2014) Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens 23:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  21. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  CAS  PubMed  Google Scholar 

  23. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  24. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  25. Faul C, Wolf M (2015) Hunt for the culprit of cardiovascular injury in kidney disease. Cardiovasc Res 108:209–211

    Article  PubMed  PubMed Central  Google Scholar 

  26. Portale AA, Wolf M, Juppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344–353

    Article  CAS  PubMed  Google Scholar 

  27. Hu MC, Kuro-o M, Moe OW (2013) Klotho and chronic kidney disease. Contrib Nephrol 180:47–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fajol A, Chen H, Umbach AT, Quarles LD, Lang F, Foller M (2016) Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by beta-blocker treatment. FASEB J 30:994–1001

    Article  CAS  PubMed  Google Scholar 

  30. Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, Goodman W, Cooper K (2015) Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol 10:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeda Y, Komaba H, Goto S, Fujii H, Umezu M, Hasegawa H, Fujimori A, Nishioka M, Nishi S, Fukagawa M (2011) Effect of intravenous saccharated ferric oxide on serum FGF23 and mineral metabolism in hemodialysis patients. Am J Nephrol 33:421–426

    Article  CAS  PubMed  Google Scholar 

  32. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152:640–648

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, Chonchol M, Investigators H (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 22:1913–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24:2792–2796

    Article  CAS  PubMed  Google Scholar 

  36. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M, Chronic Renal Insufficiency Cohort (CRIC) Study Group (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arnlov J, Carlsson AC, Sundstrom J, Ingelsson E, Larsson A, Lind L, Larsson TE (2013) Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int 83:160–166

    Article  PubMed  CAS  Google Scholar 

  38. Baia LC, Humalda JK, Vervloet MG, Navis G, Bakker SJ, de Borst MH, NIGRAM Consortium (2013) Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin J Am Soc Nephrol 8:1968–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bunce T, Dorado B, Deanfield JE, Rees L (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472

    Article  CAS  PubMed  Google Scholar 

  40. Goligorsky MS (2015) Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res Clin Pract 34:76–82

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Demirkaya E, Eyileten T, Caglar K, Oguz Y, Vural A, Yenicesu M, Zoccali C (2010) FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 78:679–685

    Article  CAS  PubMed  Google Scholar 

  42. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390

    Article  CAS  PubMed  Google Scholar 

  43. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Turker T, Unal HU, Gok M, Cetinkaya H, Eyileten T, Oguz Y, Caglar K, Vural A, Mallamaci F, Zoccali C (2013) Longitudinal analysis of vascular function and biomarkers of metabolic bone disorders before and after renal transplantation. Am J Nephrol 37:126–134

    Article  CAS  PubMed  Google Scholar 

  44. Sarmento-Dias M, Santos-Araujo C, Poinhos R, Oliveira B, Silva IS, Silva LS, Sousa MJ, Correia F, Pestana M (2016) Fibroblast growth factor 23 is associated with left ventricular hypertrophy, not with uremic vasculopathy in peritoneal dialysis patients. Clin Nephrol 85:135–141

    Article  CAS  PubMed  Google Scholar 

  45. Lindberg K, Olauson H, Amin R, Ponnusamy A, Goetz R, Taylor RF, Mohammadi M, Canfield A, Kublickiene K, Larsson TE (2013) Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS One 8:e60658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR, Wacker MJ (2014) FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab 307:E426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Six I, Okazaki H, Gross P, Cagnard J, Boudot C, Maizel J, Drueke TB, Massy ZA (2014) Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One 9:e93423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279

    Article  CAS  PubMed  Google Scholar 

  49. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, Kuen E, Konig P, Kraatz G, Mann JF, Muller GA, Kohler H, Riegler P (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18:2600–2608

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, Chihara Y, Kida I, Ogihara T (2006) Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 339:827–832

    Article  CAS  PubMed  Google Scholar 

  52. Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T, Matsumura Y, Masuda H, Kurabayashi M, Kuro-o M, Nabeshima Y, Nagai R (1998) Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun 248:324–329

    Article  CAS  PubMed  Google Scholar 

  53. Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, Kuro-o M, Nabeshima Y, Kurabayashi M, Nagai R (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 276:767–772

    Article  CAS  PubMed  Google Scholar 

  54. Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, Barre PE (1995) Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 47:186–192

    Article  CAS  PubMed  Google Scholar 

  55. Glassock RJ, Pecoits-Filho R, Barberato SH (2009) Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol 4[Suppl 1]:S79–91

    Article  PubMed  Google Scholar 

  56. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE (2009) Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207:546–551

    Article  CAS  PubMed  Google Scholar 

  57. Seeherunvong W, Abitbol CL, Chandar J, Rusconi P, Zilleruelo GE, Freundlich M (2012) Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr Nephrol 27:2129–2136

    Article  PubMed  Google Scholar 

  58. Touchberry CD, Green TM, Tchikrizov V, Mannix JE, Mao TF, Carney BW, Girgis M, Vincent RJ, Wetmore LA, Dawn B, Bonewald LF, Stubbs JR, Wacker MJ (2013) FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab 304:E863–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstadt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, Renshaw L, Hawkins N, Wang W, Chen C, Tsai MM, Cattley RC, Wronski TJ, Xia X, Li X, Henley C, Eschenberg M, Richards WG (2012) FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest 122:2543–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leifheit-Nestler M, Grosse Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer DC, Faul C, Haffner D (2016) Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant 31:1088–1099

    Article  PubMed  Google Scholar 

  62. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF (2000) Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol 14:898–902

    Article  CAS  PubMed  Google Scholar 

  63. Agarwal I, Ide N, Ix JH, Kestenbaum B, Lanske B, Schiller NB, Whooley MA, Mukamal KJ (2014) Fibroblast growth factor-23 and cardiac structure and function. J Am Heart Assoc 3:e000584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Unsal A, Kose Budak S, Koc Y, Basturk T, Sakaci T, Ahbap E, Sinangil A (2012) Relationship of fibroblast growth factor 23 with left ventricle mass index and coronary calcificaton in chronic renal disease. Kidney Blood Press Res 36:55–64

    Article  CAS  PubMed  Google Scholar 

  65. Vered I, Vered Z, Perez JE, Jaffe AS, Whyte MP (1990) Normal left ventricular performance in children with X-linked hypophosphatemic rickets: a Doppler echocardiography study. J Bone Miner Res 5:469–474

    Article  CAS  PubMed  Google Scholar 

  66. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–9

    Article  CAS  PubMed  Google Scholar 

  67. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, Tsushima RG, Scholey JW, Khokha R, Penninger JM (2007) Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 75:29–39

    Article  CAS  PubMed  Google Scholar 

  68. Zhao YX, Yin HQ, Yu QT, Qiao Y, Dai HY, Zhang MX, Zhang L, Liu YF, Wang LC, de Liu S, Deng BP, Zhang YH, Pan CM, Song HD, Qu X, Jiang H, Liu CX, Lu XT, Liu B, Gao F, Dong B (2010) ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum Gene Ther 21:1545–1554

    Article  CAS  PubMed  Google Scholar 

  69. Beberashvili I, Sinuani I, Azar A, Yasur H, Shapiro G, Feldman L, Averbukh Z, Weissgarten J (2011) IL-6 levels, nutritional status, and mortality in prevalent hemodialysis patients. Clin J Am Soc Nephrol 6:2253–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vaziri ND (2004) Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol 24:469–473

    Article  CAS  PubMed  Google Scholar 

  71. Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, Hamm LL, Negrea L, Leonard MB, Raj D, Wolf M, Chronic Renal Insufficiency C (2012) Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol 7:1155–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nasrallah MM, El-Shehaby AR, Osman NA, Fayad T, Nassef A, Salem MM, Sharaf El Din UA (2013) The association between fibroblast growth factor-23 and vascular calcification is mitigated by inflammation markers. Nephron Extra 3:106–112

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dounousi E, Torino C, Pizzini P, Cutrupi S, Panuccio V, D’Arrigo G, Abd ElHafeez S, Tripepi G, Mallamaci F, Zoccali C (2016) Intact FGF23 and alpha-Klotho during acute inflammation/sepsis in CKD patients. Eur J Clin Invest 46:234–241

    Article  CAS  PubMed  Google Scholar 

  74. Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling-Perry K, Gales B, Adams JS, Salusky IB, Hewison M (2013) Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J Bone Miner Res 28:46–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han X, Li L, Yang J, King G, Xiao Z, Quarles LD (2016) Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages. FEBS Lett 590:53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Masuda Y, Ohta H, Morita Y, Nakayama Y, Miyake A, Itoh N, Konishi M (2015) Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull 38:687–693

    Article  CAS  PubMed  Google Scholar 

  77. Masai H, Joki N, Sugi K, Moroi M (2013) A preliminary study of the potential role of FGF-23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis 226:228–233

    Article  CAS  PubMed  Google Scholar 

  78. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA (2010) Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant 25:2679–2685

    Article  CAS  PubMed  Google Scholar 

  79. Srivaths PR, Goldstein SL, Krishnamurthy R, Silverstein DM (2014) High serum phosphorus and FGF 23 levels are associated with progression of coronary calcifications. Pediatr Nephrol 29:103–109

    Article  PubMed  Google Scholar 

  80. Nakayama M, Kaizu Y, Nagata M, Ura Y, Ikeda H, Shimamoto S, Kuma K (2013) Fibroblast growth factor 23 is associated with carotid artery calcification in chronic kidney disease patients not undergoing dialysis: a cross-sectional study. BMC Nephrol 14:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bortnick AE, Bartz TM, Ix JH, Chonchol M, Reiner A, Cushman M, Owens D, Barasch E, Siscovick DS, Gottdiener JS, Kizer JR (2016) Association of inflammatory, lipid and mineral markers with cardiac calcification in older adults. Heart. doi:10.1136/heartjnl-2016-309404

    Google Scholar 

  82. Cancela AL, Santos RD, Titan SM, Goldenstein PT, Rochitte CE, Lemos PA, dos Reis LM, Graciolli FG, Jorgetti V, Moyses RM (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One 7:e36883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roos M, Lutz J, Salmhofer H, Luppa P, Knauss A, Braun S, Martinof S, Schomig A, Heemann U, Kastrati A, Hausleiter J (2008) Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf) 68:660–665

    Article  CAS  Google Scholar 

  84. Inaba M, Okuno S, Imanishi Y, Yamada S, Shioi A, Yamakawa T, Ishimura E, Nishizawa Y (2006) Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos Int 17:1506–1513

    Article  CAS  PubMed  Google Scholar 

  85. Voigt M, Fischer DC, Rimpau M, Schareck W, Haffner D (2010) Fibroblast growth factor (FGF)-23 and fetuin-A in calcified carotid atheroma. Histopathology 56:775–788

    Article  PubMed  Google Scholar 

  86. van Venrooij NA, Pereira RC, Tintut Y, Fishbein MC, Tumber N, Demer LL, Salusky IB, Wesseling-Perry K (2014) FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant 29:1525–1532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, Chavkin NW, Rahman M, Wahl P, Amaral AP, Hamano T, Master SR, Nessel L, Chai B, Xie D, Kallem RR, Chen J, Lash JP, Kusek JW, Budoff MJ, Giachelli CM, Wolf M, Chronic Renal Insufficiency Cohort Study I (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, Yatomi Y, Fukumoto S, Fujita T, Shimosawa T (2014) Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int 85:1103–1111

    Article  CAS  PubMed  Google Scholar 

  89. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na + -dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    Article  CAS  PubMed  Google Scholar 

  90. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094

    Article  CAS  PubMed  Google Scholar 

  91. Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2004) FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 314:409–414

    Article  CAS  PubMed  Google Scholar 

  92. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Clinton SM, Glover ME, Maltare A, Laszczyk AM, Mehi SJ, Simmons RK, King GD (2013) Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood. Brain Res 1527:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kunert SK, Hartmann H, Haffner D, Leifheit-Nestler M (2016) Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children. J Bone Miner Metab. doi:10.1007/s00774-016-0746-y

    PubMed  Google Scholar 

  95. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, Weiner DE, Sarnak MJ (2014) FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int 18:78–86

    Article  PubMed  Google Scholar 

  96. Drew DA, Weiner DE (2014) Cognitive impairment in chronic kidney disease: keep vascular disease in mind. Kidney Int 85:505–507

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hartmann H, Hawellek N, Wedekin M, Vogel C, Das AM, Balonwu K, Ehrich JH, Haffner D, Pape L (2015) Early kidney transplantation improves neurocognitive outcome in patients with severe congenital chronic kidney disease. Transpl Int 28:429–436

    Article  PubMed  Google Scholar 

  98. Sarnak MJ, Tighiouart H, Scott TM, Lou KV, Sorensen EP, Giang LM, Drew DA, Shaffi K, Strom JA, Singh AK, Weiner DE (2013) Frequency of and risk factors for poor cognitive performance in hemodialysis patients. Neurology 80:471–480

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O (2010) Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist 16:357–373

    Article  CAS  PubMed  Google Scholar 

  100. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  101. Liu P, Chen L, Bai X, Karaplis A, Miao D, Gu N (2011) Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res 1412:9–17

    Article  CAS  PubMed  Google Scholar 

  102. Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L, Gassman JJ, Raj D, Cheung AK, Kusek JW, Flessner MF, Wolf M, Block GA (2015) Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J Am Soc Nephrol 26:2328–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Eyileten T, Caglar K, Oguz Y, Vural A, Yenicesu M, Mallamaci F, Zoccali C (2012) Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am J Kidney Dis 59:177–185

    Article  CAS  PubMed  Google Scholar 

  104. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM, Allison MA, Asplin J, Smits G, Hoofnagle AN, Kooienga L, Thadhani R, Mannstadt M, Wolf M, Chertow GM (2012) Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23:1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zaritsky J, Rastogi A, Fischmann G, Yan J, Kleinman K, Chow G, Gales B, Salusky IB, Wesseling-Perry K (2014) Short daily hemodialysis is associated with lower plasma FGF23 levels when compared with conventional hemodialysis. Nephrol Dial Transplant 29:437–441

    Article  CAS  PubMed  Google Scholar 

  106. Barros X, Torregrosa JV, Martinez de Osaba MJ, Casals G, Paschoalin R, Duran CE, Campistol JM (2012) Earlier decrease of FGF-23 and less hypophosphatemia in preemptive kidney transplant recipients. Transplantation 94:830–836

    Article  CAS  PubMed  Google Scholar 

  107. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, Donahue SE, Asplin JR (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 6:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuboyama N, Watanabe Y, Yamaguchi M, Sato K, Suzuki T, Akiba T (1999) Effects of niceritrol on faecal and urinary phosphate excretion in normal rats. Nephrol Dial Transplant 14:610–614

    Article  CAS  PubMed  Google Scholar 

  109. Rao M, Steffes M, Bostom A, Ix JH (2014) Effect of niacin on FGF23 concentration in chronic kidney disease. Am J Nephrol 39:484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thumfart J, Hilliger T, Stiny C, Wagner S, Querfeld U, Muller D (2015) Is peritoneal dialysis still an equal option? Results of the Berlin pediatric nocturnal dialysis program. Pediatr Nephrol 30:1181–1187

    Article  PubMed  Google Scholar 

  111. Haffner D, Schaefer F (2013) Searching the optimal PTH target range in children undergoing peritoneal dialysis: new insights from international cohort studies. Pediatr Nephrol 28:537–545

    Article  PubMed  Google Scholar 

  112. Investigators ET, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahaffey KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS (2012) Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 367:2482–2494

    Article  Google Scholar 

  113. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drueke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, Floege J, Evaluation of Cinacalcet HTtLCETI (2015) Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation 132:27–39

    Article  CAS  PubMed  Google Scholar 

  114. Xie J, Yoon J, An SW, Kuro-o M, Huang CL (2015) Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol 26:1150–1160

    Article  CAS  PubMed  Google Scholar 

  115. Shroff R, Aitkenhead H, Costa N, Trivelli A, Litwin M, Picca S, Anarat A, Sallay P, Ozaltin F, Zurowska A, Jankauskiene A, Montini G, Charbit M, Schaefer F, Wuhl E, Group ET (2016) Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J Am Soc Nephrol 27:314–322

    Article  PubMed  Google Scholar 

  116. Yokoyama K, Hirakata H, Akiba T, Fukagawa M, Nakayama M, Sawada K, Kumagai Y, Block GA (2014) Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin J Am Soc Nephrol 9:543–552

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wyatt CM, Drueke TB (2016) Fibroblast growth factor receptor 4: the missing link between chronic kidney disease and FGF23-induced left ventricular hypertrophy? Kidney Int 89:7–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Haffner.

Ethics declarations

Conflict of interest

DH received honoraria or research support from Amgen, Hexal, Pfizer, Raptor Pharmaceuticals, and Shire. MLN received a travel grant from Amgen.

Additional information

Answers

1. d

2. c

3. b

4. a

5. e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haffner, D., Leifheit-Nestler, M. Extrarenal effects of FGF23. Pediatr Nephrol 32, 753–765 (2017). https://doi.org/10.1007/s00467-016-3505-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3505-3

Keywords

Navigation