Skip to main content
Log in

Biochemical parameters of renal impairment/injury and surrogate markers of nephron number in intrauterine growth-restricted and preterm neonates at 30–40 days of postnatal corrected age

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Premature and/or intrauterine growth-restricted neonates have an increased risk of developing postnatal renal injuries in later life. Studies on renal physiology in these neonates at a corrected age of 30–40 days are scarce and mostly relate to preterm infants. The data from these studies often lack the results of correlation analyses between biochemical parameters and nephron number—data which could provide additional insight and/or improve recognition of individuals at higher risk of renal failure.

Methods

Urinary total protein and albumin levels and N-acetyl-β-D-glucosaminidase and cathepsin B activity were evaluated in preterm and intrauterine growth-restricted infants at a corrected age of 30–40 days and compared to data from a healthy control neonate population. The data were then associated with predominant susceptibility factors of renal damage related to low nephron number, such as gestational age, birth weight, total renal volume and renal cortex volume.

Results

Compared to the control neonate population, we found significantly increased levels of all biochemical parameters tested in the intrauterine growth-restricted neonates, whereas in the preterm infants we observed a significant increase in cathepsin B activity, total protein level and, to a lesser extent, albumin level. Cathepsin B activity showed a significant, strong and inverse correlation with all surrogate markers of nephron number and was also strongly and positively correlated with urinary albumin level.

Conclusions

At this postnatal age, we found that lower nephron number in low birth weight neonates was associated to tubular impairment/injury that could be concurrent with a dysfunction of glomerular permeability. Urinary cathepsin B activity may be a candidate marker for the early prediction of renal susceptibility to damage in low birth weight neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoy WE, Rees M, Kile E, Mathews JD, Wang Z (1999) A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int 56:1072–1077

    Article  CAS  PubMed  Google Scholar 

  2. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472–1476

    Article  CAS  PubMed  Google Scholar 

  3. Fan Z, Lipsitz S, Egan B, Lackland D (2000) The impact of birth weight on the racial disparity of end-stage renal disease. Ann Epidemiol 10:459–466

    Article  PubMed  Google Scholar 

  4. Drukker A, Guignard JP (2002) Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 14:175–182

    Article  PubMed  Google Scholar 

  5. Abitbol CL, Bauer CR, Montane B, Chandar J, Duara S, Zilleruelo G (2003) Long-term follow- up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol 18:887–893

    Article  PubMed  Google Scholar 

  6. Choker G, Gouyon JB (2004) Diagnosis of acute renal failure in very preterm infants. Biol Neonate 86:212–216

    Article  CAS  PubMed  Google Scholar 

  7. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A (2005) Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol 20:579–584

    Article  PubMed  Google Scholar 

  8. Andreoli SP (2004) Acute renal failure in the newborn. Semin Perinatol 28:112–123

    Article  PubMed  Google Scholar 

  9. Klahr S, Schreiner G, Ichikawa I (1988) The progression of renal disease. N Engl J Med 318:1657–1666

    Article  CAS  PubMed  Google Scholar 

  10. Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taal MW, Brenner BM (2006) Predicting initiation and progression of chronic kidney disease developing renal risk scores. Kidney Int 70:1694–1705

    Article  CAS  PubMed  Google Scholar 

  12. Kandasamy Y, Smith R, Wright IM, Lumbers ER (2013) Extra-uterine renal growth in preterm infants: oligonephropathy and prematurity. Pediatr Nephrol 28:1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T (2014) Clinicopathological assessment of the nephron number. Clin Kidney J 7:107–114

    Article  PubMed  PubMed Central  Google Scholar 

  14. Charlton JR, Springsteen CH, Carmody JB (2014) Nephron number and its determinants in early life: a primer. Pediatr Nephrol 29:2299–2308

    Article  PubMed  Google Scholar 

  15. Schreuder MF (2012) Safety in glomerular numbers. Pediatr Nephrol 27:1881–1987

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:124–127

    Google Scholar 

  17. Hoy WE, Bertram JF, Douglas-Denton R, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Article  PubMed  Google Scholar 

  18. Cappuccini B, Torlone E, Ferri C, Arnone S, Troiani S, Bini V, Di Renzo GC (2013) Renal echo-3D and microalbuminuriauria in children of diabetic mothers: a preliminary study. J Dev Orig Health Dis 4:285–289

    Article  CAS  PubMed  Google Scholar 

  19. Rowe DJF, Dawnay A, Watts GF (1990) Microalbuminuria in diabetes mellitus: review and recommendations for the measurement of albumin in urine. Ann Clin Biochem 27:297–312

    Article  CAS  PubMed  Google Scholar 

  20. Shihabi ZK, Konen JC, O’Connor ML (1991) Albuminuria vs urinary total protein for detecting chronic renal disorders. Clin Chem 37:621–624

    CAS  PubMed  Google Scholar 

  21. Iseki K, Ikemiya Y, Iseki C, Takishita S (2003) Proteinuria and the risk of developing end-stage renal disease. Kidney Int 63:1468–1474

    Article  PubMed  Google Scholar 

  22. Viazzi F, Leoncini G, Conti N, Tomolillo C, Giachero G, Vercelli M, Deferrari G, Pontremo R (2010) Microalbuminuria is a predictor of chronic renal insufficiency in patients without diabetes and with hypertension: the MAGIC study. Clin J Am Soc Nephrol 5:1099–1106

    Article  PubMed  PubMed Central  Google Scholar 

  23. Skálová S (2005) The diagnostic role of urinary N-acetyl-B-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Med (Hradec Kralove) 48:75–80

    Google Scholar 

  24. Kojima T, Sasai-Takedatsu M, Hirata Y, Kobayashi Y (1994) Characterization of renal tubular damage in preterm infants with renal failure. Acta Paediatr Jpn 36:392–395

    Article  CAS  PubMed  Google Scholar 

  25. Tsukahara H, Hori C, Tsuchida S, Hiraoka M, Sudo M, Haruki S, Suehiro F (1994) Urinary N-acetyl-beta-D-glucosaminidase excretion in term and preterm neonates. J Paediatr Child Health 30:536–538

    Article  CAS  PubMed  Google Scholar 

  26. Schaefer L, Gilge U, Heidland A, Schaefer RM (1994) Urinary excretion of cathepsin B and cystatins as parameters of tubular damage. Kidney Int Suppl 46:64–67

    Google Scholar 

  27. Liu WJ, Xu BH, Ye L, Liang D, Wu HL, Zheng YY, Deng JK, Li B, Liu HF (2015) Urinary proteins induce lysosomal membrane permeabilization and lysosomal dysfunction in renal tubular epithelial cells. Am J Physiol Renal Physiol 308:639–649

    Article  Google Scholar 

  28. Smulders YM, Slaats EH, Rakic M, Smulders FT, Stehouwer CD, Silberbusch J (1998) Short-term variability and sampling distribution of various parameters of urinary albumin excretion in patients with non-insulin-dependent diabetes mellitus. J Lab Clin Med 132:39–46

    Article  CAS  PubMed  Google Scholar 

  29. Beccari T, Mancuso F, Costanzi E, Tassi C, Barone R, Aisa MC, Orlacchio O (2000) beta-hexosaminidase, alpha-D-mannosidase, and beta-mannosidase expression in serum from patients with carbohydrate-deficient glycoprotein syndrome type I. Clin Chim Acta 302:125–132

    Article  CAS  PubMed  Google Scholar 

  30. Aisa MC, Rahman S, Senin U, Maggio D, Russell RG (1996) Cathepsin B activity in normal human osteoblast-like cells and human osteoblastic osteosarcoma cells (MG-63): regulation by interleukin-1 beta and parathyroid hormone. Biochim Biophys Acta 21:29–36

    Article  Google Scholar 

  31. Rousian M, Verwoerd-Dikkeboom CM, Koning AH, Hop WC, Van der Spek PJ, Exalto N, Steegers EA (2009) Early pregnancy volume measurements: validation of ultrasound techniques and new perspectives. BJOG 116:278–285

    Article  CAS  PubMed  Google Scholar 

  32. Aperia A, Broberger O, Elinder G, Herin P, Zetterstrom R (1981) Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 2:183–187

    Article  Google Scholar 

  33. Tsukahara H, Yoshimoto M, Saito M, Sakaguchi T, Mitsuyoshi I, Hayashi S, Nakamura K, Kikuchi K, Sudo M (1990) Assessment of tubular function in neonates using urinary beta 2-microglobulin. Pediatr Nephrol 4:512–514

    Article  CAS  PubMed  Google Scholar 

  34. Awad H, El-Safty I, El-Barbary M, Imam S (2002) Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am J Med Sci 324:261–266

    Article  PubMed  Google Scholar 

  35. Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, Moore L, Singh G, Hoy WE, Black MJ (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:149–158

    Article  Google Scholar 

  36. Chen JY, Lee YL, Liu CB (1991) Urinary beta 2-microglobulin and N-acetylbeta-D-glucosaminidase (NAG) as early markers of renal tubular dysfunction in sick neonates. J Formos Med Assoc 90:132–137

    CAS  PubMed  Google Scholar 

  37. Hayashi M, Tomobe K, Hirabayashi H, Hoshimoto K, Ohkura T, Inaba N (2001) Increased excretion of N-acetyl-beta-D-glucosaminidase and beta-2-microglobulin in gestational week. Am J Med Sci 321:168–172

    Article  CAS  PubMed  Google Scholar 

  38. Perrone S, Mussap M, Longini M, Fanos V, Bellieni CV, Proietti F, Cataldi L, Buonocore G (2007) Oxidative kidney damage in preterm newborns during perinatal period. Clin Biochem 40:656–660

    Article  CAS  PubMed  Google Scholar 

  39. Clark PM, Bryant TN, Hall MA, Lowes JA, Rowe DJ (1989) Neonatal renal function assessment. Arch Dis Child 64:1264–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fell JM, Thakkar H, Newman DJ, Price CP (1997) Measurement of albumin and low molecular weight proteins in the urine of newborn infants using a cotton wool ball collection method. Acta Paediatr 86:518–522

    Article  CAS  PubMed  Google Scholar 

  41. Galaske RG (1986) Renal functional maturation: renal handling of proteins by mature and immature newborns. Eur J Pediatr 145:368–371

    Article  CAS  PubMed  Google Scholar 

  42. Tsukahara H, Fujii Y, Tsuchida S, Hiraoka M, Morikawa K, Haruki M, Sudo M (1994) Renal handling of albumin and beta-2-microglobulin in neonates. Nephron 68:212–216

    Article  CAS  PubMed  Google Scholar 

  43. Pflueger AC, Larson TS, Hagl S, Knox FG (1999) Role of nitric oxide in intrarenal hemodynamics in experimental diabetes mellitus in rats. Am J Physiol 277:725–733

    Google Scholar 

  44. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974–2984

    Article  CAS  PubMed  Google Scholar 

  45. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vallon V, Blantz RC, Thomson S (2003) Glomerular hyperfiltration and the salt paradox in early (corrected) type 1diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14:53–59

    Article  Google Scholar 

  47. Nusken E, Spencer L, Wohlfarth M, Lippach G, Lechner F, Dotsch J, Nusken KD (2015) Whole-transcript expression analysis identifies new candidate genes involved in renal tubular programming after utero-placental insufficiency in rats. J Dev Orig Health Dis 6[Suppl 2]:S140

    Google Scholar 

  48. Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, Willnow TE, Devuyst O, Christensen EI (2007) Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci USA 104:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barbati A, Cappuccini B, Aisa MC, Grasselli C, Zamarra M, Bini V, Bellomo G, Di Renzo GC (2016) Increased urinary cystatin-C levels correlate with reduced renal volumes in neonates with intrauterine growth restriction. Neonatology 109:154–160

    Article  CAS  PubMed  Google Scholar 

  50. Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H, Ma KL, Crowley SD, Liu BC (2015) Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. J Biol Chem 290:18018–18028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by “Fondazione Cassa di Risparmio di Perugia “ (Code Project 2014.0252.021) and Gebisa Research Foundation Perugia, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Aisa.

Ethics declarations

The process for obtaining informed consent was approved by the appropriate Institutional Review Committee. This study was conducted in compliance with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aisa, M.C., Cappuccini, B., Barbati, A. et al. Biochemical parameters of renal impairment/injury and surrogate markers of nephron number in intrauterine growth-restricted and preterm neonates at 30–40 days of postnatal corrected age. Pediatr Nephrol 31, 2277–2287 (2016). https://doi.org/10.1007/s00467-016-3484-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3484-4

Keywords

Navigation