Skip to main content
Log in

Roles of renal ammonia metabolism other than in acid–base homeostasis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The importance of renal ammonia metabolism in acid–base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid–base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid–base roles of renal ammonia metabolism is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Ammonia can exist in two molecular forms, NH3 (free ammonia) and NH4 + (ammonium cation). Throughout this review, “ammonia” refers to the combination of both molecules; “NH3” refers specifically to the molecular form of NH3; “NH4 +” refers specifically to the molecular form NH4 +.

References

  1. Gil-Pena H, Mejia N, Santos F (2013) Renal tubular acidosis. J Pediatr 164:691–698

    Article  PubMed  Google Scholar 

  2. Mitch WE (2006) Metabolic and clinical consequences of metabolic acidosis. J Nephrol 19:S70–S75

    CAS  PubMed  Google Scholar 

  3. Weiner ID, Verlander JW (2015) Renal acidification mechanisms. In: Tall MW, Chertow GM, Marsden PA, Skorecki K, Yu AS, Brenner BM (eds) Brenner and Rector’s the kidney, 10th edn. W.B. Saunders Press, New York, pp 234–257

    Google Scholar 

  4. Hamm LL, Nakhoul N, Hering-Smith KS (2015) Acid–base homeostasis. Clin J Am Soc Nephrol 10:2232–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiner ID, Mitch WE, Sands JM (2014) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10:1444–1458

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220

    PubMed  PubMed Central  Google Scholar 

  7. Halperin ML, Dhadli SC, Kamel KS (2006) Physiology of acid–base balance: links with kidney stone prevention. Semin Nephrol 26:441–446

    Article  CAS  PubMed  Google Scholar 

  8. Unwin RJ, Capasso G, Shirley DG (2004) An overview of divalent cation and citrate handling by the kidney. Nephron Physiol 98:15–20

    Article  Google Scholar 

  9. Eriksson LS, Broberg S, Bjorkman O, Wahren J (1985) Ammonia metabolism during exercise in man. Clin Physiol 5:325–336

    Article  CAS  PubMed  Google Scholar 

  10. Elkinton JR, Huth EJ, Webster GD Jr, McCance RA (1960) The renal excretion of hydrogen ion in renal tubular acidosis. Am J Med 36:554–575

    Article  Google Scholar 

  11. Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638

    Article  CAS  PubMed  Google Scholar 

  12. Wright PA, Knepper MA (1990) Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol 259:F961–F970

    CAS  PubMed  Google Scholar 

  13. Wright PA, Knepper MA (1990) Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid–base loading. Am J Physiol 259:F53–F59

    CAS  PubMed  Google Scholar 

  14. Nagami GT (2004) Ammonia production and secretion by S3 proximal tubule segments from acidotic mice: role of ANG II. Am J Physiol Renal Physiol 287:F707–F712

    Article  CAS  PubMed  Google Scholar 

  15. Nagami GT, Sonu CM, Kurokawa K (1986) Ammonia production by isolated mouse proximal tubules perfused in vitro: effect of metabolic acidosis. J Clin Invest 78:124–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagami GT (2008) Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol 294:F874–F880

    Article  CAS  PubMed  Google Scholar 

  17. Weiner ID, Verlander JW (2014) Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 306:F1107–F1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid–base transport. Am J Physiol Renal Physiol 300:F11–F23

    Article  CAS  PubMed  Google Scholar 

  19. Owen EE, Tyor MP, Flanagan JF, Berry JN (1960) The kidney as a source of blood ammonia in patients with liver disease: the effect of acetazolamide. J Clin Invest 39:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haussinger D, Lamers WH, Moorman AF (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93

    CAS  PubMed  Google Scholar 

  21. Haussinger D (1989) Glutamine metabolism in the liver: overview and current concepts. Metabolism 38:14–17

    Article  CAS  PubMed  Google Scholar 

  22. Kaiser S, Gerok W, Haussinger D (1988) Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest 18:535–542

    Article  CAS  PubMed  Google Scholar 

  23. Haussinger D (1987) Structural-functional organization of hepatic glutamine and ammonium metabolism. Biochem Soc Trans 15:369–372

    Article  CAS  PubMed  Google Scholar 

  24. Haussinger D (1986) Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle. Adv Enzyme Regul 25:159–180

    Article  CAS  PubMed  Google Scholar 

  25. Verlander JW, Chu D, Lee HW, Handlogten ME, Weiner ID (2013) Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am J Physiol Renal Physiol 305:F701–F713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koen H, Okuda K, Musha H, Tateno Y, Fukuda N, Matsumoto T, Shisido F, Rikitake T, Iinuma T, Kurisu A, Arimizu N (1980) A dynamic study of rectally absorbed ammonia in liver cirrhosis using ammonia and a positron camera. Dig Dis Sci 25:842–848

    Article  CAS  PubMed  Google Scholar 

  27. Cooper AJ (1990) Ammonia metabolism in normal and portacaval-shunted rats. Adv Exp Med Biol 272:23–46

    Article  CAS  PubMed  Google Scholar 

  28. Conn HO (1972) Studies of the source and significance of blood ammonia. IV. Early ammonia peaks after ingestion of ammonium salts. Yale J Biol Med 45:543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gumz ML, Rabinowitz L, Wingo CS (2015) An Integrated view of potassium homeostasis. N Engl J Med 373:60–72

    Article  CAS  PubMed  Google Scholar 

  30. Unwin RJ, Luft FC, Shirley DG (2011) Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 7:75–84

    Article  CAS  PubMed  Google Scholar 

  31. Weiner ID, Wingo CS (1997) Hypokalemia—consequences, causes and correction. J Am Soc Nephrol 8:1179–1188

    CAS  PubMed  Google Scholar 

  32. Gabuzda GJ, Hall II (1966) Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine (Baltimore) 45:481–489

    Article  CAS  Google Scholar 

  33. Shear L, Gabuzda GJ (1970) Potassium deficiency and endogenous ammonium overload from kidney. Am J Clin Nutr 23:614–618

    CAS  PubMed  Google Scholar 

  34. Baertl JM, Sancetta SM, Gabuzda GJ (1963) Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J Clin Invest 42:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID (2011) Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 301:F823–F832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Busque SM, Wagner CA (2009) Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 297:F440–F450

    Article  CAS  PubMed  Google Scholar 

  37. Hossain SA, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H (2011) Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 301:F969–F978

    Article  PubMed  Google Scholar 

  38. Nagami GT (1990) Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. J Clin Invest 86:32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol 251:F904–F910

    CAS  PubMed  Google Scholar 

  40. Jones B, Simpson DP (1983) Influence of alterations in acid–base conditions on intracellular pH of intact renal cortex. Ren Physiol 6:28–35

    CAS  PubMed  Google Scholar 

  41. Schoolwerth AC, Culpepper RM (1990) Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats. Miner Electrolyte Metab 16:191–196

    CAS  PubMed  Google Scholar 

  42. Olde Damink SW, Jalan R, Deutz NE, Redhead DN, Dejong CH, Hynd P, Jalan RA, Hayes PC, Soeters PB (2003) The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285

    Article  PubMed  Google Scholar 

  43. Bounoure L, Ruffoni D, Muller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA (2014) The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J Am Soc Nephrol 25:2040–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brosnan JT, McPhee P, Hall B, Parry DM (1978) Renal glutamine metabolism in rats fed high-protein diets. Am J Physiol 235:E261–E265

    CAS  PubMed  Google Scholar 

  45. Lee HW, Osis G, Handlogten ME, Guo H, Verlander JW, Weiner ID (2015) Effect of dietary protein restriction on renal ammonia metabolism. Am J Physiol Renal Physiol 308:F1463–F1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue K, Takahashi T, Yamamoto Y, Suzuki E, Takahashi Y, Imai K, Inoue Y, Hirai K, Tsuji D, Itoh K (2015) Influence of glutamine synthetase gene polymorphisms on the development of hyperammonemia during valproic acid–based therapy. Seizure 33:76–80

    Article  PubMed  Google Scholar 

  47. Elhamri M, Ferrier B, Martin M, Baverel G (1993) Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat. J Pharmacol Exp Ther 266:89–96

    CAS  PubMed  Google Scholar 

  48. Martin G, Durozard D, Besson J, Baverel G (1990) Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules. Biochim Biophys Acta 1033:261–266

    Article  CAS  PubMed  Google Scholar 

  49. Doval M, Culebras M, Lopez-Farre A, Rengel M, Gougoux A, Vinay P, Lopez-Novoa JM (1989) Effect of valproate on lactate and glutamine metabolism by rat renal cortical tubules. Proc Soc Exp Biol Med 190:357–364

    Article  CAS  PubMed  Google Scholar 

  50. Marini AM, Zaret BS, Beckner RR (1988) Hepatic and renal contributions to valproic acid-induced hyperammonemia. Neurology 38:365–371

    Article  CAS  PubMed  Google Scholar 

  51. Rengel M, Doval M, Culebras M, Gougoux A, Vinay P, Lopez-Novoa JM (1988) Ammoniagenesis and valproic acid in the rat in vivo: role of the kidney. Contrib Nephrol 63:132–135

    Article  CAS  PubMed  Google Scholar 

  52. Imler M, Chabrier G, Marescaux C, Warter JM (1986) Effects of 2,4-dinitrophenol on renal ammoniagenesis in the rat. Eur J Pharmacol 123:175–179

    Article  CAS  PubMed  Google Scholar 

  53. Warter JM, Brandt C, Marescaux C, Rumbach L, Micheletti G, Chabrier G, Krieger J, Imler M (1983) The renal origin of sodium valproate-induced hyperammonemia in fasting humans. Neurology 33:1136–1140

    Article  CAS  PubMed  Google Scholar 

  54. Warter JM, Marescaux C, Brandt C, Rumbach L, Micheletti G, Chabrier G, Imler M, Kurtz D (1983) Sodium valproate associated with phenobarbital: effects on ammonia metabolism in humans. Epilepsia 24:628–633

    Article  CAS  PubMed  Google Scholar 

  55. Warter JM, Imler M, Marescaux C, Chabrier G, Rumbach L, Micheletti G, Krieger J (1983) Sodium valproate-induced hyperammonemia in the rat: Role of the kidney. Eur J Pharmacol 87:177–182

    Article  CAS  PubMed  Google Scholar 

  56. Tannen RL (1977) Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11:453–465

    Article  CAS  PubMed  Google Scholar 

  57. Tannen RL (1970) The effect of uncomplicated potassium depletion on urine acidification. J Clin Invest 49:813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tannen RL, Terrien T (1975) Potassium-sparing effect of enhanced renal ammonia production. Am J Physiol 228:699–705

    CAS  PubMed  Google Scholar 

  59. Jaeger P, Karlmark B, Giebisch G (1983) Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am J Physiol 245:F593–F600

    CAS  PubMed  Google Scholar 

  60. Hamm LL, Gillespie C, Klahr S (1985) NH4Cl inhibition of transport in the rabbit cortical collecting tubule. Am J Physiol 248:F631–F637

    CAS  PubMed  Google Scholar 

  61. Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458:157–168

    Article  CAS  PubMed  Google Scholar 

  62. Muto S (2001) Potassium transport in the mammalian collecting duct. Physiol Rev 81:85–116

    CAS  PubMed  Google Scholar 

  63. Frank AE, Wingo CS, Weiner ID (2000) Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am J Physiol Renal Physiol 278:F219–F226

    CAS  PubMed  Google Scholar 

  64. Chalfant ML, Denton JS, Berdiev BK, Ismailov II, Benos DJ, Stanton BA (1999) Intracellular H+ regulates the alpha-subunit of ENaC, the epithelial Na+ channel. Am J Physiol 276:C477–C486

    CAS  PubMed  Google Scholar 

  65. Konstas AA, Mavrelos D, Korbmacher C (2000) Conservation of pH sensitivity in the epithelial sodium channel (ENaC) with Liddle’s syndrome mutation. Pflugers Arch 441:341–350

    Article  CAS  PubMed  Google Scholar 

  66. Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Ammonium interaction with the epithelial sodium channel. Am J Physiol Renal Physiol 281:F493–F502

    CAS  PubMed  Google Scholar 

  67. Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS (2010) The renal H, K-ATPases. Curr Opin Nephrol Hypertens 19:478–482

    Article  CAS  PubMed  Google Scholar 

  68. Weiner ID, Linus S, Wingo CS (2010) Disorders of potassium metabolism. In: Johnson RJ, Fluege J, Feehally J (eds) Comprehensive clinical nephrology, 4th edn. W.B. Saunders, Philadelphia, pp 118–129

    Chapter  Google Scholar 

  69. Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID (2002) Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 282:F1120–F1128

    Article  CAS  PubMed  Google Scholar 

  70. Good DW (1990) Ammonium transport by the loop of Henle. Miner Electrolyte Metab 16:291–298

    CAS  PubMed  Google Scholar 

  71. Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ (1999) In rat tIMCD, NH4 + uptake by the Na+, K+-ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277:F866–F874

    CAS  PubMed  Google Scholar 

  72. Frank AE, Weiner ID (2001) Effects of ammonia on acid–base transport by the B-type intercalated cell. J Am Soc Nephrol 12:1607–1614

    CAS  PubMed  Google Scholar 

  73. Barri YM, Wingo CS (1997) The effects of potassium depletion and supplementation on blood pressure: a clinical review. Am J Med Sci 314:37–40

    CAS  PubMed  Google Scholar 

  74. Krishna GG, Kapoor SC (1991) Potassium depletion exacerbates essential hypertension. Ann Intern Med 115:77–83

    Article  CAS  PubMed  Google Scholar 

  75. Krishna GG (1990) Effect of potassium intake on blood pressure. J Am Soc Nephrol 1:43–52

    CAS  PubMed  Google Scholar 

  76. Hernandez RE, Schambelan M, Cogan MG, Colman J, Morris RC, Sebastian A (1987) Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int 31:1356–1367

    Article  CAS  PubMed  Google Scholar 

  77. Cremer W, Bock KD (1977) Symptoms and course of chronic hypokalemic nephropathy in man. Clin Nephrol 7:112–119

    CAS  PubMed  Google Scholar 

  78. Loon NR, Wilcox CS (1998) Mild metabolic alkalosis impairs the natriuretic response to bumetanide in normal human subjects. Clin Sci (Lond) 94:287–292

    Article  CAS  Google Scholar 

  79. Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D (2013) a-Ketoglutarate regulates acid–base balance through an intrarenal paracrine mechanism. J Clin Invest 123:3166–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin M, Ferrier B, Baverel G (1989) Transport and utilization of alpha-ketoglutarate by the rat kidney in vivo. Pflugers Arch 413:217–224

    Article  CAS  PubMed  Google Scholar 

  81. Ferrier B, Martin M, Baverel G (1985) Reabsorption and secretion of alpha-ketoglutarate along the rat nephron: a micropuncture study. Am J Physiol 248:F404–F412

    CAS  PubMed  Google Scholar 

  82. Balagura S, Pitts RF (1964) Renal handling of a-ketoglutarate by the dog. Am J Physiol 207:483–494

    CAS  PubMed  Google Scholar 

  83. Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH (2016) Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hadchouel J, Ellison DH, Gamba G (2016) Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol 78:367–389

    Article  CAS  PubMed  Google Scholar 

  85. Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH (2014) KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 111:11864–11869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N, Rodriguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, Garcia-Valdes J, Hadchouel J, Gamba G (2015) The effect of WNK4 on the Na+−Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 26:1781–1786

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Generation and publication of this review was supported by funds from the NIH (R01–DK045788 and R01–DK107798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. David Weiner.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, I.D. Roles of renal ammonia metabolism other than in acid–base homeostasis. Pediatr Nephrol 32, 933–942 (2017). https://doi.org/10.1007/s00467-016-3401-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3401-x

Keywords

Navigation