Skip to main content
Log in

Recreating kidney progenitors from pluripotent cells

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Access to human pluripotent cells theoretically provides a renewable source of cells that can give rise to any required cell type for use in cellular therapy or bioengineering. However, successfully directing this differentiation remains challenging for most desired endpoints cell type, including renal cells. This challenge is compounded by the difficulty in identifying the required cell type in vitro and the multitude of renal cell types required to build a kidney. Here we review our understanding of how the embryo goes about specifying the cells of the kidney and the progress to date in adapting this knowledge for the recreation of nephron progenitors and their mature derivatives from pluripotent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26(9):1529–1533

    Article  PubMed  Google Scholar 

  2. Rumballe BA, Georgas KM, Combes A, Ju A, Gilbert T, Little MH (2011) Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol 360(1):110–122

    CAS  PubMed  Google Scholar 

  3. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98(1):160–170

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mironov V, Drake C, Wen X (2006) Research project: Charleston Bioengineered Kidney Project. Biotechnol J 1(9):903–905

    Article  CAS  PubMed  Google Scholar 

  5. Skardal A, Zhang JX, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181

    Article  CAS  PubMed  Google Scholar 

  6. Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, Pramanik S, Brown BN, Ryu WS, Bonassar LJ, Spector JA (2013) High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One 8(2):e56506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593

    Article  CAS  PubMed  Google Scholar 

  8. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366(1575):2198–2207

    Article  CAS  PubMed  Google Scholar 

  10. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453(7194):524–528

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 4:258–265

    Article  Google Scholar 

  13. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2007) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111(4):1876–1884

    Article  PubMed  Google Scholar 

  14. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  16. Collin J, Lako M (2011) Concise review: putting a finger on stem cell biology: zinc finger nuclease-driven targeted genetic editing in human pluripotent stem cells. Stem Cells 29(7):1021–1033

    Article  CAS  PubMed  Google Scholar 

  17. Sachinidis A, Sotiriadou I, Seelig B, Berkessel A, Hescheler J (2008) A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach. Comb Chem High Throughput Screen 11(1):70–82

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Wurdak H, Schultz PG (2010) Directed embryonic stem cell differentiation with small molecules. Future Med Chem 2(6):965–973

    Article  CAS  PubMed  Google Scholar 

  19. Daley GQ (2003) From embryos to embryoid bodies: generating blood from embryonic stem cells. Ann N Y Acad Sci 996:122–131

    Article  PubMed  Google Scholar 

  20. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    Article  CAS  PubMed  Google Scholar 

  21. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  22. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa C, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    Article  CAS  PubMed  Google Scholar 

  23. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  CAS  PubMed  Google Scholar 

  24. Schier AF (2003) Nodal signaling in vertebrate development. Ann Rev Cell Dev Biol 19:589–621

    Article  CAS  Google Scholar 

  25. Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034

    Article  CAS  PubMed  Google Scholar 

  26. Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG (2012) The Mix family of homeobox genes–key regulators of mesendoderm formation during vertebrate development. Dev Biol 367:163–177

    Article  CAS  PubMed  Google Scholar 

  27. Wilson V, Manson L, Skarnes WC, Beddington RS (1995) The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121:877–886

    CAS  PubMed  Google Scholar 

  28. Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PP, Elefanty AG, Robb L (2002) Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129(15):3597–3608

    CAS  PubMed  Google Scholar 

  29. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135(17):2969–2979

    Article  CAS  PubMed  Google Scholar 

  30. Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941

    Article  CAS  PubMed  Google Scholar 

  31. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    Article  CAS  PubMed  Google Scholar 

  32. Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372

    Article  CAS  PubMed  Google Scholar 

  33. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  CAS  PubMed  Google Scholar 

  34. James RG, Schultheiss TM (2003) Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 253:109–124

    Article  CAS  PubMed  Google Scholar 

  35. Wijgerde M, Karp S, McMahon J, McMahon AP (2005) Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 286(1):149–157

    Article  CAS  PubMed  Google Scholar 

  36. James R, Schultheiss T (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125

    Article  CAS  PubMed  Google Scholar 

  37. Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126(6):1103–1108

    CAS  PubMed  Google Scholar 

  38. Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423(6942):876–881

    Article  CAS  PubMed  Google Scholar 

  39. Abu-Abed S, Dollé P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15(2):226–240

    Article  CAS  PubMed  Google Scholar 

  40. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16(11):1423–1432

    Article  CAS  PubMed  Google Scholar 

  41. Niederreither K, Subbarayan V, Dollé P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21(4):444–448

    Article  CAS  PubMed  Google Scholar 

  42. Serluca FC, Fishman MC (2001) Pre-pattern in the pronephric kidney field of zebrafish. Development 128:2233–2241

    CAS  PubMed  Google Scholar 

  43. Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M (2006) Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol 299:35–51

    Article  CAS  PubMed  Google Scholar 

  44. Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167

    Article  PubMed  Google Scholar 

  45. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127

    Article  CAS  PubMed  Google Scholar 

  46. Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress and projections. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a008300

    PubMed  Google Scholar 

  47. Dudley AT, Godin RE, Robertson EJ (1999) Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 13(12):1601–1613

    Article  CAS  PubMed  Google Scholar 

  48. Barasch J, Qiao J, McWilliams G, Chen D, Oliver JA, Herzlinger D (1997) Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Physiol 273:F757–F767

    CAS  PubMed  Google Scholar 

  49. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L (2011) FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 138(23):5099–5112

    Article  CAS  PubMed  Google Scholar 

  50. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R (2013) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22(6):1191–1207

    Article  Google Scholar 

  51. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci USA 110(12):4640–4645

    Article  CAS  PubMed  Google Scholar 

  52. Blank U, Brown A, Adams DC, Karolak MJ, Oxburgh L (2009) BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 136(21):3557–3566

    Article  CAS  PubMed  Google Scholar 

  53. So PL, Danielian PS (1999) Cloning and expression analysis of a mouse gene related to Drosophila odd-skipped. Mech Dev 84:157–160

    Article  CAS  PubMed  Google Scholar 

  54. Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA (2011) Lhx1 is required for specification of the renal progenitor cell field. PLoS One 6:e18858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Burgess R, Cserjesi P, Ligon KL, Olson EN (1995) Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev Biol 168(2):296–306

    Article  CAS  PubMed  Google Scholar 

  56. Chapman DL, Agulnik I, Hancock S, Silver LM, Papaioannou VE (1996) Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol 180(2):534–542

    Article  CAS  PubMed  Google Scholar 

  57. Mahlapuu M, Ormestad M, Enerbäck S, Carlsson P (2001) The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128(2):155–166

    CAS  PubMed  Google Scholar 

  58. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004

    Article  CAS  PubMed  Google Scholar 

  59. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    CAS  PubMed  Google Scholar 

  60. Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333(2):312–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Georgas KM, Rumballe BA, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286

    Article  CAS  PubMed  Google Scholar 

  62. Thiagarajan R, Georgas K, Rumballe B, Lesieur E, Chiu H, Taylor D, Tang D, Grimmond SM, Little MH (2011) Identification of anchor genes during kidney development defines ontological relationships, molecular subcompartments and regulatory pathways. PLoS One 6(2):e17286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS (2011) Defining the molecular character of the developing and adult kidney podocyte. PLoS One 6(9):e24640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Georgas K, Rumballe B, Wilkinson L, Chiu HS, Lesieur E, Gilbert T, Little MH (2008) Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol 130(5):927–942

    Article  CAS  PubMed  Google Scholar 

  65. Yamamoto M, Cui L, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K (2005) Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am J Physiol Renal Physiol 290(1):F52–F60

    Article  PubMed  Google Scholar 

  66. Steenhard B, Isom K, Cazcarro P, Dunmore J, Godwin A, St John P, Abrahamson D (2005) Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol 16:1623–1631

    Article  CAS  PubMed  Google Scholar 

  67. Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16(12):3527–3534

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, Sasaki S, Terada Y (2005) Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun 336:585–595

    Article  CAS  PubMed  Google Scholar 

  69. Bruce S, Rea R, Steptoe A, Busslinger M, Bertram J, Perkins A (2007) In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation 75:337–349

    Article  CAS  PubMed  Google Scholar 

  70. Vigneau C, Polgar K, Striker G, Elliott J, Hyink D, Weber O, Fehling HJ, Keller G, Burrow C, Wilson P (2007) Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J Am Soc Nephrol 18:1709–1720

    Article  CAS  PubMed  Google Scholar 

  71. Morizane R, Monkawa T, Itoh H (2009) Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun 390:1334–1339

    Article  CAS  PubMed  Google Scholar 

  72. Ren X, Zhang J, Gong X, Niu X, Zhang X, Chen P, Zhang X (2010) Differentiation of murine embryonic stem cells toward renal lineages by conditioned medium from ureteric bud cells in vitro. Acta Biochim Biophys Sin (Shanghai) 42(7):464–471

    Article  CAS  PubMed  Google Scholar 

  73. Nishikawa M, Yanagawa N, Kojima N, Yuri S, Hauser PV, Jo OD, Yanagawa N (2012) Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development. Biochem Biophys Res Commun 417(2):897–902

    Article  CAS  PubMed  Google Scholar 

  74. Mae S, Shirasawa S, Yoshie S, Sato F, Kanoh Y, Ichikawa H, Yokoyama T, Yue F, Tomotsune D, Sasaki K (2010) Combination of small molecules enhances differentiation of mouse embryonic stem cells into intermediate mesoderm through BMP7-positive cells. Biochem Biophys Res Commun 393(4):877–882

    Article  CAS  PubMed  Google Scholar 

  75. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257

    Article  CAS  PubMed  Google Scholar 

  76. Perantoni AO (2003) The ureteric bud. Tissue-culture approaches to branching morphogenesis and inductive signaling. Methods Mol Med 86:179–192

    PubMed  Google Scholar 

  77. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2011) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137(2):283–292

    Article  Google Scholar 

  78. Lin SA, Kolle G, Grimmond SM, Zhou Q, Doust E, Little MH, Aronow B, Ricardo SD, Pera MF, Bertram JF, Laslett AL (2010) Subfractionation of differentiating human embryonic stem cell populations allows the isolation of a mesodermal population enriched for intermediate mesoderm and putative renal progenitors. Stem Cells Dev 19(10):1637–1648

    Article  CAS  PubMed  Google Scholar 

  79. Challen GA, Martinez G, Davis M, Teasdale R, Grimmond S, Little MH (2004) Identifying the molecular phenotype of renal progenitor cells. J Am Soc Nephrol 15(9):2344–2357

    Article  CAS  PubMed  Google Scholar 

  80. Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367

    Article  PubMed  Google Scholar 

  81. Lusis M, Li J, Ineson J, Christensen ME, Rice A, Little MH (2010) Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res 5(1):23–39

    Article  CAS  PubMed  Google Scholar 

  82. Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY (2013) Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int 83(4):593–603

    Article  CAS  PubMed  Google Scholar 

  83. Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA, Laslett AL, Kerr PG, Ricardo SD (2012) The directed differentiation of human iPS cells into kidney podocytes. PLoS One 7(9):e46453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Georgas KM, Chiu HS, Lesieur E, Rumballe BA, Little MH (2011) Expression of metanephric nephron-patterning genes in differentiating mesonephric tubules. Dev Dyn 240(6):1600–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ML is a Senior Principal Research Fellow of the National Health and Medical Research Council of Australia. BM is a Rosamond Siemon Postgraduate Scholar. This work is supported by Stem Cells Australia (Australian Research Council SRI110001002) and the National Health and Medical Research Council (APP1041277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa H. Little.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasato, M., Maier, B. & Little, M.H. Recreating kidney progenitors from pluripotent cells. Pediatr Nephrol 29, 543–552 (2014). https://doi.org/10.1007/s00467-013-2592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2592-7

Keywords

Navigation