Skip to main content
Log in

TRPC channel modulation in podocytes—inching toward novel treatments for glomerular disease

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Glomerular kidney disease is a major healthcare burden and considered to represent a sum of disorders that evade a refined and effective treatment. Excellent biological and genetic studies have defined pathways that go awry in podocytes, which are the regulatory cells of the glomerular filter. The question now is how to define targets for novel improved therapies. In this review, we summarize critical points around targeting the TRPC6 channel in podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J (2000) Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics 105(6):1242–1249

    Article  CAS  PubMed  Google Scholar 

  2. Reiser J, Gupta V, Kistler AD (2010) Toward the development of podocyte-specific drugs. Kidney Int 77(8):662–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Möller CC, Flesche J, Reiser J (2009) Sensitizing the slit diaphragm with TRPC6 ion channels. J Am Soc Nephrol 20(5):950–953

    Article  PubMed  CAS  Google Scholar 

  4. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37(7):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17(9):428–437

    Article  CAS  PubMed  Google Scholar 

  6. Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60(2):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11(1):1–8

    Article  CAS  PubMed  Google Scholar 

  8. Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Mäkelä E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 14(10):1475–1483

    Article  Google Scholar 

  9. Tryggvason K, Wartiovaara J (2001) Molecular basis of glomerular permselectivity. Curr Opin Nephrol Hypertens 10(4):543–549

    Article  CAS  PubMed  Google Scholar 

  10. Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestilä M, Jalanko H, Holmberg C, Tryggvason K (1999) Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci USA 96(14):7962–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rantanen M, Palmén T, Pätäri A, Ahola H, Lehtonen S, Aström E, Floss T, Vauti F, Wurst W, Ruiz P, Kerjaschki D, Holthöfer H (2002) Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J Am Soc Nephrol 13(6):1586–1594

    Article  CAS  PubMed  Google Scholar 

  12. Chuang PY, He JC (2009) Signaling in regulation of podocyte phenotypes. Nephron Physiol 111(2):9–15

    Article  CAS  Google Scholar 

  13. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  14. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol 194:261–281

    Article  CAS  Google Scholar 

  16. Kiselyov K, Xu X, Kuo TH, Mozhayeva G, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396(6710):478–482

    Article  CAS  PubMed  Google Scholar 

  17. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4(3):423–429

    Article  CAS  PubMed  Google Scholar 

  18. Zhu MX (2005) Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451(1):105–115

    Article  CAS  PubMed  Google Scholar 

  19. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99(11):7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dryer SE, Reiser J (2010) TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299(4):F689–F701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308(5729):1801–1804

    Article  CAS  PubMed  Google Scholar 

  22. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell 11(4):575–582

    Article  Google Scholar 

  23. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24(4):349–354

    Article  CAS  PubMed  Google Scholar 

  24. Niaudet P, Gubler MC (2006) WT1 and glomerular diseases. Pediatr Nephrol 21(11):1653–1660

    Article  PubMed  Google Scholar 

  25. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodríguez-Pérez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24(3):251–256

    Article  CAS  PubMed  Google Scholar 

  26. Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451(1):35–42

    Article  CAS  PubMed  Google Scholar 

  27. Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112(3):744–760

    Article  CAS  PubMed  Google Scholar 

  28. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286(5438):312–315

    Article  CAS  PubMed  Google Scholar 

  29. Grunkemeyer JA, Kwoh C, Huber TB, Shaw AS (2005) CD2-associated protein (CD2AP) expression in podocytes rescues lethality of CD2AP deficiency. J Biol Chem 280(33):29677–29681

    Article  CAS  PubMed  Google Scholar 

  30. Schindl R, Romanin C (2007) Assembly domains in TRP channels. Biochem Soc Trans 5(Pt 1):84–85

    Article  Google Scholar 

  31. Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279(21):22047–22056

    Article  CAS  PubMed  Google Scholar 

  32. Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118, discussion 118–122, 155–159, 263–266

    CAS  PubMed  Google Scholar 

  33. Wedel BJ, Vazquez G, McKay RR, Bird GStJ, Putney JW Jr (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278(28):25758–25765

    Article  CAS  PubMed  Google Scholar 

  34. Smyth JT, Lemonnier L, Vazquez G, Bird GS, Putney JW Jr (2006) Dissociation of regulated trafficking of TRPC3 channels to the plasma membrane from their activation by phospholipase C. J Biol Chem 281(17):11712–11720

    Article  CAS  PubMed  Google Scholar 

  35. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279(8):7241–7246

    Article  CAS  PubMed  Google Scholar 

  36. Heeringa SF, Möller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4(11):e7771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lepage PK, Lussier MP, Barajas-Martinez H, Bousquet SM, Blanchard AP, Francoeur N, Dumaine R, Boulay G (2006) Identification of two domains involved in the assembly of transient receptor potential canonical channels. J Biol Chem 281(41):30356–30364

    Article  CAS  PubMed  Google Scholar 

  38. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F, Arbeitsgemeinschaft für Paediatrische Nephrologie Study Group (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119(4):e907–e919

    Article  PubMed  Google Scholar 

  39. Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18(1):29–36

    Article  PubMed  CAS  Google Scholar 

  40. Ronco P, Debiec H (2006) New insights into the pathogenesis of membranous glomerulonephritis. Curr Opin Nephrol Hypertens 15(3):258–263

    Article  CAS  PubMed  Google Scholar 

  41. Glassock RJ (2004) The treatment of idiopathic membranous nephropathy: a dilemma or a conundrum? Am J Kidney Dis 44(3):562–566

    Article  PubMed  Google Scholar 

  42. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imai H, Hamai K, Komatsuda A, Ohtani H, Miura AB (1997) IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int 51(1):270–276

    Article  CAS  PubMed  Google Scholar 

  44. Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ (2003) DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest 111(6):877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cybulsky AV, Bonventre JV, Quigg RJ, Lieberthal W, Salant DJ (1990) Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. Kidney Int 38(5):803–811

    Article  CAS  PubMed  Google Scholar 

  46. Topham PS, Haydar SA, Kuphal R, Lightfoot JD, Salant DJ (1999) Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney Int 55(5):1763–1775

    Article  CAS  PubMed  Google Scholar 

  47. Brooks RC, McCarthy KD, Lapetina EG, Morell P (1989) Receptor-stimulated phospholipase A2 activation is coupled to influx of external calcium and not to mobilization of intracellular calcium in C62B glioma cells. J Biol Chem 264(33):20147–20153

    Article  CAS  PubMed  Google Scholar 

  48. Wenzel RR (2005) Renal protection in hypertensive patients: selection of antihypertensive therapy. Drugs 65[Suppl 2]:29–39

    Article  CAS  PubMed  Google Scholar 

  49. Alaniz C, Brosius FC 3rd, Palmieri J (1993) Pharmacologic management of adult idiopathic nephrotic syndrome. Clin Pharm 12(6):429–439

    CAS  PubMed  Google Scholar 

  50. Hauser PV, Pippin JW, Kaiser C, Krofft RD, Brinkkoetter PT, Hudkins KL, Kerjaschki D, Reiser J, Alpers CE, Shankland SJ (2010) Novel siRNA delivery system to target podocytes in vivo. PLoS One 5(3):e9463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chiang WC, Geel TM, Altintas MM, Sever S, Ruiters MH, Reiser J (2010) Establishment of protein delivery systems targeting podocytes. PLoS One 5(7):e11837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstädt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296(3):C558–C569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by US National Institutes of Health (NIH) grants DK073495 and DK089394 to J.R. The authors thank Jim Stanis for help with the illustration of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Reiser.

Additional information

Answers

1) c

2) a

3) d

4) a

5) d

Questions

Questions

Answers appear following the reference list.

  1. 1.

    Which is the key cell in the kidney that regulates filtration?

    1. a)

      mesangial cell

    2. b)

      proximal tubular epithelial cell

    3. c)

      podocyte

    4. d)

      parietal epithelial cell

    5. e)

      endothelial cell

  2. 2.

    The podocyte is most similar to ?

    1. a)

      pericyte

    2. b)

      vascular smooth muscle cell

    3. c)

      adipocyte

    4. d)

      fibroblast

    5. e)

      none of the above

  3. 3.

    The glomerular slit diaphragm is ?

    1. a)

      a microvillus

    2. b)

      an intracellular contact

    3. c)

      an extension of the GBM

    4. d)

      a modified adherens junction

    5. e)

      a classical tight junction

  4. 4.

    TRPC6 is potentially a good drug target because ?

    1. a)

      it is involved in regulation of the kidney filter

    2. b)

      it is the main gene mutated in IgA nephropathy

    3. c)

      it is the TRP channel in polycystic kidney disease

    4. e)

      none of the above

  5. 5.

    Podocytes are druggable cells because ?

    1. a)

      they turn over frequently

    2. b)

      they are exposed to blood and primary urine

    3. c)

      they display active endo- and macropinocytosis

    4. d)

      b + c are correct

    5. e)

      none of the above

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Hindi, S., Reiser, J. TRPC channel modulation in podocytes—inching toward novel treatments for glomerular disease. Pediatr Nephrol 26, 1057–1064 (2011). https://doi.org/10.1007/s00467-010-1718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1718-4

Keywords

Navigation